Editor

Zeynep KEKEÇ

© Copyright 2023

Printing, broadcasting and sales rights of this book are reserved to Academician Bookstore House Inc. All or parts of this book may not be reproduced, printed or distributed by any means mechanical, electronic, photocopying, magnetic paper and/or other methods without prior written permission of the publisher. Tables, figures and graphics cannot be used for commercial purposes without permission. This book is sold with banderol of Republic of Türkiye Ministry of Culture.

ISBN Publisher Certificate Number

978-625-399-371-9 475

47518

Book Title

Printing and Binding

Current Approaches in Emergency Medicine Vadi Printingpress

Editor

Bisac Code

Zeynep KEKEÇ ORCID iD:0000-0003-0914-9090 MED026000

DOI

Publishing Coordinator
Yasin DİLMEN

10.37609/akya.2811

140111 2 121/121 (

Page and Cover Design

Typesetting and Cover Design by Akademisyen

Library ID Card

Current Approaches in Emergency Medicine / editor : Zeynep Kekeç.
Ankara : Akademisyen Yayınevi Kitabevi, 2023.
139 page. : figure, table. ; 160x235 mm.
Includes Bibliography and Index.
ISBN 9786253993719
1. Medicine--Emergency medicine.

WARNING

The information contained in this product is only presented as a source for licensed medical workers. It should not be used for any professional medical advice or medical diagnosis. It does not constitute a doctor-patient, therapist-patient and / or any other health-presentation service relationship between the Bookstore and the recipient in any way.

This product is not a synonym or a substitute for professional medical decisions. The Academician Bookstore and its affiliated companies, writers, participants, partners and sponsors are not responsible for injuries and / or damage to humans and devices arising from all applications based on product information.

In the case of prescription of drugs or other chemicals, checking over the current product information for each drug defined by the manufacturer to determine the recommended dose, duration, method and contraindications of the drug is recommended.

It is the physician's own responsibility to determine the optimal treatment an dose for the patient, and to establish a basis for the knowledge and experience of the treating physician about the patient.

The Academician Bookstore is not responsible for any changes to the product, repackaging and customizations made by a third party.

GENERAL DISTRIBUTION Akademisyen Kitabevi AŞ

Halk Sokak 5 / A Yenişehir / Ankara Tel: 0312 431 16 33 siparis@akademisyen.com

www.akademisyen.com

PREFACE

Based in Ankara in Turkey, the independent academic publisher, *Akademisyen Publishing House*, has been publishing books for almost 30 years. As the directors of *Akademisyen Publishing House*, we are proud to publish more than 2700 books across disciplines so far, especially in Health Sciences. We also publish books in Social Sciences, Educational Sciences, Physical Sciences, and also books on cultural and artistic topics.

Akademisyen Publishing House has recently commenced the process of publishing books in the international arena with the "Scientific Research Book" series in Turkish and English. The publication process of the books, which is expected to take place in March and September every year, will continue with thematic subtitles across disciplines

The books, which are considered as permanent documents of scientific and intellectual studies, are the witnesses of hundreds of years as an information recording platform. As *Akademisyen Publishing House*, we are strongly committed to working with a professional team. We understand the expectations of the authors, and we tailor our publishing services to meet their needs. We promise each author for the widest distribution of the books that we publish.

We thank all of the authors with whom we collaborated to publish their books across disciplines.

Akademisyen Publishing House Inc.

CONTENTS

Chapter 1	Approach to the Patients in Shock
Chapter 2	Anemia and Transfusions of Blood Products
Chapter 3	Aneurysmal Subarachnoid Hemorrhage
Chapter 4	Approach to Dehydration in Children
Chapter 5	Acute Abdominal Pain
Chapter 6	Current Approach to Kidney Stone Diseases in The Emergency Department
Chapter 7	Current Management of Acute Cholecystitis in Emergency
Chapter 8	Elimination Methods in the Intoxicated Patient
Chapter 9	Management of Diabetic Ketacidosis in the Emergency Department89 Veysi SİBER
Chapter 10	Marine Envenomations 97 Senem KOCA
-	Radiation Injuries

AUTHORS

MD Burak AKIN

Bağcılar Education and Research Hospital, Department of Emergency Medicine

MD İsmail BORAZAN

Etlik City Hospital, Department of Emergency Medicine

MD Seyda GEDIKASLAN

Etlik City Hospital, Department of Emergency Medicine

MD Selman GÜNDOĞAN

Bağcılar Education and Research Hospital, Department of Emergency Medicine

MD İbrahim GÜVEN

Bozuyuk State Hospital, Department of Emergency Medicine

MD Senem KOCA

Etlik City Hospital, Department of Emergency Medicine

MD Sadiye SERT

Department of Paediatrics, Konya Beyhekim Training and Research Hospital

MD Veysi SİBER

Etlik City Hospital - Emergency Medicine Clinic

MD İlker ŞİRİN

Etlik City Hospital, Department of Emergency Medicine

Chapter 1

APPROACH TO THE PATIENTS IN SHOCK

İlker ŞİRİN¹

Introduction

Shock is a clinically characterized syndrome primarily resulting from inadequate delivery of oxygen and nutrients to tissues and organs, leading to cellular dysfunction. According to a systematic review, approximately 2% of patients presenting to the emergency department are found to have hypotension (SBP (Systolic Blood Pressure)<90 mm/Hg), and 1-2% are in a state of shock (1).

In the approach to a patient in shock, the primary objective should be early recognition and initiation of empirical treatment. While investigating the underlying cause is essential, simultaneous patient stabilization is imperative. Therefore, comprehending the stages of shock is crucial to understand the pathophysiology across all types of shock.

- Non-progressive Stage: The stage at which compensatory mechanisms of circulation come into play. Peripheral resistance increases, venous structures constrict, and heart activity intensifies. Coronary and cerebral blood flow are preserved by reflexes.
- **Progressive Stage:** This is the phase where shock continuously worsens, compensatory mechanisms prove inadequate, and a vicious cycle ensues, further exacerbating the shock. During this stage, there is a decrease in cardiac output due to compromised cardiac nourishment, leading to reduced arterial pressure and systemic blood flow. Inadequate tissue perfusion results from diminished cerebral and coronary blood flow. Additionally, intravascular clotting initiates, brain nourishment decreases, causing vascular dilation, and capillary permeability rises, while venous return declines. The outcomes during this phase perpetuate the same cascade, driving the system into a vicious cycle.
- **Irreversible Stage:** This is the stage where high-energy phosphate reserves are depleted, energy sources are entirely consumed, and death occurs.

MD, Ankara Etlik Şehir Hastanesi Acil Tıp Kliniği, sirinilkerr@gmail.com, ORCID iD: 0000-0003-2694-5574

For a patient diagnosed with tension pneumothorax, immediate decompression is crucial. A finger thoracostomy should be performed in the fifth intercostal space before the midclavicular line, followed by tube thoracostomy.

In cases where a ortic dissection or myocardial rupture has not led to pericardial tamponade, emergency intervention is required. Pericardiocentesis guided by ultrasound should be performed promptly.

In the case of cardiogenic shock due to arrhythmia, while investigating the cause of the arrhythmia, consideration should be given to cardioversion. In the presence of myocardial infarction, antiplatelet and anticoagulant medications should be initiated promptly.

For a patient in shock due to pulmonary embolism, thrombolytic therapy should be considered.

If there is suspicion of adrenal crisis, a condition that should not be forgotten among differential shock diagnoses, intravenous administration of 100 mg hydrocortisone is recommended.

- Holler JG, Bech CN, Henriksen DP, Mikkelsen S, Pedersen C, Lassen AT. Nontraumatic hypotension and shock in the emergency department and the prehospital setting, prevalence, etiology, and mortality: a systematic review. *PLoS One*. 2015;10(3):e0119331.
- 2. Vincent JL, De Backer D. Circulatory shock. N Engl J Med. 2013;369(18):1726-34.
- 3. Walley KR. Sepsis-induced myocardial dysfunction. *Curr Opin Crit Care*. 2018;24(4):292-9.
- 4. Gamkrelidze M, Intskirveli N, Vardosanidze K, Goliadze L, Chikhladze K, Ratiani L. Myocardial dysfunction during septic shock (review). *Georgian Med News*. 2014(237):40-6.
- 5. Gitz Holler J, Jensen HK, Henriksen DP, Rasmussen LM, Mikkelsen S, Pedersen C, et al. Etiology of Shock in the Emergency Department: A 12-Year Population-Based Cohort Study. *Shock*. 2019;51(1):60-7.
- 6. Ashruf JF, Bruining HA, Ince C. New insights into the pathophysiology of cardiogenic shock: the role of the microcirculation. *Curr Opin Crit Care*. 2013;19(5):381-6.
- Suresh MR, Chung KK, Schiller AM, Holley AB, Howard JT, Convertino VA. Unmasking the Hypovolemic Shock Continuum: The Compensatory Reserve. J Intensive Care Med. 2019;34(9):696-706.
- 8. Shapiro NI, Howell MD, Talmor D, Nathanson LA, Lisbon A, Wolfe RE, et al. Serum lactate as a predictor of mortality in emergency department patients with infection. *Ann Emerg Med.* 2005;45(5):524-8.
- 9. Oedorf K, Day DE, Lior Y, Novack V, Sanchez LD, Wolfe RE, et al. Serum Lactate Predicts Adverse Outcomes in Emergency Department Patients With and Without Infection. *West J Emerg Med.* 2017;18(2):258-66.

- 10. Sweeney DA, Wiley BM. Integrated Multiorgan Bedside Ultrasound for the Diagnosis and Management of Sepsis and Septic Shock. *Semin Respir Crit Care Med*. 2021;42(5):641-9.
- 11. Jones AE, Craddock PA, Tayal VS, Kline JA. Diagnostic accuracy of left ventricular function for identifying sepsis among emergency department patients with nontraumatic symptomatic undifferentiated hypotension. *Shock.* 2005;24(6):513-7.
- 12. Pich H, Heller AR. [Obstructive shock]. Anaesthesist. 2015;64(5):403-19.
- 13. Alerhand S, Hickey SM. Tricuspid Annular Plane Systolic Excursion (TAPSE) for Risk Stratification and Prognostication of Patients with Pulmonary Embolism. *J Emerg Med.* 2020;58(3):449-56.
- 14. Mesin L, Albani S, Sinagra G. Non-invasive Estimation of Right Atrial Pressure Using Inferior Vena Cava Echography. *Ultrasound Med Biol.* 2019;45(5):1331-7.
- 15. Beales L, Wolstenhulme S, Evans JA, West R, Scott DJ. Reproducibility of ultrasound measurement of the abdominal aorta. *Br J Surg.* 2011;98(11):1517-25.
- 16. Hoffmann B, Bessman ES, Um P, Ding R, McCarthy ML. Successful sonographic visualisation of the abdominal aorta differs significantly among a diverse group of credentialed emergency department providers. *Emerg Med J.* 2011;28(6):472-6.
- 17. Orso D, Paoli I, Piani T, Cilenti FL, Cristiani L, Guglielmo N. Accuracy of Ultrasonographic Measurements of Inferior Vena Cava to Determine Fluid Responsiveness: A Systematic Review and Meta-Analysis. *J Intensive Care Med.* 2020;35(4):354-63.
- 18. Smallwood N, Dachsel M. Point-of-care ultrasound (POCUS): unnecessary gadgetry or evidence-based medicine? *Clin Med (Lond)*. 2018;18(3):219-24.
- 19. Keikha M, Salehi-Marzijarani M, Soldoozi Nejat R, Sheikh Motahar Vahedi H, Mirrezaie SM. Diagnostic Accuracy of Rapid Ultrasound in Shock (RUSH) Exam; A Systematic Review and Meta-analysis. *Bull Emerg Trauma*. 2018;6(4):271-8.
- 20. Milne J, Atkinson P, Lewis D, Fraser J, Diegelmann L, Olszynski P, et al. Sonography in Hypotension and Cardiac Arrest (SHoC): Rates of Abnormal Findings in Undifferentiated Hypotension and During Cardiac Arrest as a Basis for Consensus on a Hierarchical Point of Care Ultrasound Protocol. *Cureus*. 2016;8(4):e564.
- 21. Perera P, Mailhot T, Riley D, Mandavia D. The RUSH exam: Rapid Ultrasound in SHock in the evaluation of the critically lll. *Emerg Med Clin North Am.* 2010;28(1):29-56, vii.
- 22. Annane D, Siami S, Jaber S, Martin C, Elatrous S, Declère AD, et al. Effects of fluid resuscitation with colloids vs crystalloids on mortality in critically ill patients presenting with hypovolemic shock: the CRISTAL randomized trial. *Jama*. 2013;310(17):1809-17.
- 23. Semler MW, Self WH, Wanderer JP, Ehrenfeld JM, Wang L, Byrne DW, et al. Balanced Crystalloids versus Saline in Critically Ill Adults. *N Engl J Med*. 2018;378(9):829-39.
- 24. Cestero RF, Dent DL. Endpoints of resuscitation. *Surg Clin North Am.* 2015;95(2):319-36.
- 25. Russell JA. Is there a good MAP for septic shock? N Engl J Med. 2014;370(17):1649-51
- 26. Asfar P, Meziani F, Hamel JF, Grelon F, Megarbane B, Anguel N, et al. High versus low blood-pressure target in patients with septic shock. *N Engl J Med.* 2014;370(17):1583-93.

CHAPTER 2

ANEMIA AND TRANSFUSIONS OF BLOOD PRODUCTS

Selman GÜNDOĞAN¹

Introduction

Anemia is a condition in which the erythrocyte count and hemoglobin level decrease to a level that cannot meet the physiological needs of the person. The World Health Organization (WHO) stated the hemoglobin level as 12 mg/dl for women and 13 mg/dl for men (1). Severe anemia was defined as 8 mg/dl in individuals over 5 years of age and 7 mg/dl in children under 5 years of age (2). Hemoglobin levels vary according to gender, age and race. Hemoglobin is responsible for delivering oxygen to tissues. In patients with anemia, hypoxia develops in the tissues. The heart and brain are the organs most affected by this hypoxia. The severity of symptoms seen in patients with anemia; Comorbidities are related to the rate at which anemia occurs and the loss of blood volume. Shortness of breath, fatigue, and weakness that occur with exertion occur before other symptoms. Pallor may be observed in patients (3,4).

Morphological Classification of Anemias

According to the morphology of erythrocytes, they are evaluated as macrocytic, normocytic and microcytic. Classification is made according to mean corpuscular volume (MCV) value (5). MCV below 80 fl is called microcytic, over 100 fl is called macrocytic, and between these two values is called normocytic (6). Anemia classification according to erythrocyte morphology is summarized in Table 1.

Transfusion

The primary objective of blood transfusion, classified as a form of organ transplantation, is to restore the deficient component. Whole blood refers to blood that has not undergone any separation into its constituent components. Blood products are generated using a variety of procedures that are applied to whole

MD, Bağcılar Education and Research Hospital, Department of Emergency Medicine, selman. gundogan26@gmail.com, ORCID iD: 0000-0001-9795-8087

- 1. WHO. Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity. Vitamin and Mineral Nutrition Information System. Geneva, World Health Organization, 2011 (WHO/NMH/NHD/MNM/11.1).
- 2. Kassebaum NJ, Jasrasaria R, Naghavi M, et al. A systematic analysis of global anemia burden from 1990 to 2010. *Blood*, 2014; 123: 615-624.
- 3. Schreir SL. Approach to the Adult Patient with Anemia Mentzer WC, Ed. Waltham, MA: UpToDate Inc, 2018.
- 4. Tefferi A. Anemia in adults: a contemporary approach to diagnosis. *Mayo Clin Proc*, 2003; 78:1274-80.
- 5. Moreno Chulilla JA, Romero Colás MS, Martín MG. Classification of anemia for gastroenterologists. *World J Gastroenterol*, 2009; 15:4627-37.
- 6. Atamer T. Anemik Hastaya Yaklaşım. Turkiye Klinikleri Journal of Hematology. 2004;2(2):89-95.
- 7. National Blood and Blood Components Preparation, Use and Quality Assurance Guide, 2016:199-214
- 8. TARD (Turkish Society of Anesthesiology and Reanimation), Anesthesia Practice Guidelines: Blood and Blood Products Transfusion Guide in Anesthesia and Intensive Care, October, 2013:7-110.
- 9. Tintinalli JE. Tintinalli's Emergency Medicine: A Comprehensive Study Guide Ninth Edition, McGraw-Hill Education. 2020:1494-1500.
- 10. Patient blood management national diagnosis and treatment guideline, Ministry of Health, Ankara, 2019:24-43.
- 11. Stevens WT, Morse BC, Bernard A, et al. Incompatible Type A Plasma Transfusion in Patients Requiring Massive Transfusion Protocol: Outcomes of An Eastern Association for the Surgery of Trauma Multicenter Study. *J Trauma Acute Care Surg.* 2017; 83:25.
- 12. Güler V, Armağan E. Blood and Blood Products. STED. 2003; 12(10):373-76.
- 13. Bolton-Maggs PH, Cohen H. Serious Hazards of Transfusion (SHOT) Haemovigilance and Progress is Improving Transfusion Safety. *Br J Haematol*, 2013; 163:303.
- 14. Osterman JL, Arora S. Blood Product Transfusions and Reactions. *Emerg Med Clin North Am* 2014; 32:727.
- 15. Carson JL, Triulzi DJ, Ness PM. Indications For and Adverse Effects of Red-Cell Transfusion. *N. Engl J. Med.* 2017; 377:1261.
- 16. Murphy MF, Waters JH, Wood EM, Yazer MH. Transfusing Blood Safely and Appropriately. *BMJ* 2013; 347:43-03.
- 17. Savage WJ. Transfusion Reactions. Hematol Oncol Clin North Am. 2016; 30(3):619-34.
- 18. Pandey S, Vyas GN. Adverse Effects of Plasma Transfusion. Transfusion. 2012; 52.
- Hirayama F. Current Understanding of Allergic Transfusion Reactions: Incidence, Pathogenesis, Laboratory Tests, Prevention and Treatment. Br J Haematol, 2013; 160:434
- Frazier SK, Higgins J, Bugajski A, Jones AR, Brown MR. Adverse Reactions to Transfusion of Blood Products and Best Practices for Prevention. *Crit Care Nurs Clin North Am.* 2017; 29(3):271-90.
- 21. Hayter MA, Pavenski K, Baker J. Massive Transfusion in The Trauma Patient: Continuing Professional Development. *Can J Anaesth*. 2012; 59:1130.

- 22. Otrock ZK, Liu C, Grossman BJ. Transfusion-Related Acute Lung Injury Risk Mitigation: An Update. *Vox Sang* 2017; 112:694.
- 23. Dasararaju R, Marques MB. Adverse Effects of Transfusion. *Cancer Control.* 2015; 22(1):16-25.
- 24. Piccin A, Cronin M, Brady R, Sweeney J, Marcheselli L, Lawlor E. Transfusion-Associated Circulatory Overload in Ireland: A Review of Cases Reported to the National Haemovigilance Office 2000 to 2010. *Transfusion*. 2015; 55(6):1223-30.
- 25. Andrzejewski C, Casey MA, Popovsky MA. How We View and Approach Transfusion-Associated Circulatory Overload: Pathogenesis, Diagnosis, Management, Mitigation and Prevention. *Transfusion*. 2013; 53(12):3037-47.

CHAPTER 3

ANEURYSMAL SUBARACHNOID HEMORRHAGE

Seyda GEDIKASLAN¹

Introduction

Subarachnoid hemorrhage (SAH) refers to life-threatening bleeding in the subarachnoid space between the arachnoid mater and the pia mater. Although the incidence of SAH varies by region, the worldwide incidence is 9 per 100,000 person-years (1). SAH accounts for 5% of all strokes (2). The causes of SAH are summarized in Table 1. It can occur spontaneously or as a result of trauma. Approximately 85% of spontaneous SAH cases are attributed to aneurysms, while the remaining cases are associated with non-aneurysmal perimesencephalic bleeding, arteriovenous (AV) malformations, amyloid angiopathies, cerebral arterial vasculitis, tumors, anticoagulant use, and cocaine use (1).

Table 1: Causes of Subarachnoid Hemorrhage

Trauma

Spontaneous

- a) Aneurysmatic Subarachnoid hemorrhage
- b) Nonaneurysmal perimesencephalic hemorrhage
- c) Arteriovenous malformation
- d) Amyloid angiopathy
- e) Cerebral artery vasculitis
- f) Tumors
- g) Anticoagulant drugs
- h) Cocaine use

Aneurysmal subarachnoid hemorrhage (aSAH) is a fatal condition, with prehospital mortality rates ranging from 22% to 26%, and in-hospital mortality rates around 19% to 20% (3). Risk factors for the development of intracranial aneurysms include female gender, black race, smoking, chronic alcohol use, hypertension, family history, and inherited diseases such as autosomal dominant

MD, Etlik City Hospital, Department of Emergency Medicine, gedikaslanseyda@gmail.com, ORCID iD: 0000-0001-6420-6444

Acknowledgement

The radiological images were obtained from the Ankara Etlik City Hospital archive.

- 1. de Rooij NK, Linn FH, van der Plas JA, et al. Incidence of subarachnoid hemorrhage: a systematic review with emphasis on region, age, gender, and time trends. *Journal of Neurology, Neurosurgery, and Psychiatry.* 2007;78(12): 1365-1372. doi: 10.1136/jnnp.2007.117655.
- 2. Odili A, Reddy U. Management of Subarachnoid Hemorrhage. *Anaesthesia and Intensive Care Medicine*. 2023;24(6): 340-347.
- 3. Hoh BL, Ko NU, Amin-Hanjani S, et al. 2023 Guideline for the Management of Patients with Aneurysmal Subarachnoid Hemorrhage: A Guideline from the American Heart Association/American Stroke Association. *Stroke*. 2023;54(7): e314-e370. doi: 10.1161/STR.00000000000000436.
- 4. D'Souza S. Aneurysmal Subarachnoid Hemorrhage. *Journal of Neurosurgical Anesthesiology*. 2015;27(3): 222-240. doi: 10.1097/ANA.000000000000130.
- 5. Shea AM, Reed SD, Curtis LH, et al. Characteristics of nontraumatic subarachnoid hemorrhage in the United States in 2003. *Neurosurgery*. 2007;61(6): 1131-1137.
- 6. Moore SA, Rabinstein AA, Stewart MW, et al. Recognizing the signs and symptoms of aneurysmal subarachnoid hemorrhage. *Expert Review of Neurotherapeutics*. 2014;14(7): 757-768. doi: 10.1586/14737175.2014.922414.
- 7. Ogunlaja OI, Cowan R. Subarachnoid Hemorrhage and Headache. Current Pain and Headache Reports. 2019 May 23;23(6):44. doi: 10.1007/s11916-019-0785-x.
- 8. Fontanarosa PB. Recognition of subarachnoid hemorrhage. *Annals of Emergency Medicine*. 1989;18(11): 1199-1205. doi: 10.1016/s0196-0644(89)80059-9.
- 9. Linn FH, Rinkel GJ, Algra A, et al. The notion of "warning leaks" in subarachnoid hemorrhage: are such patients in fact admitted with a rebleed? *Journal of Neurology, Neurosurgery, and Psychiatry.* 2000;68(3): 332-336. doi: 10.1136/jnnp.68.3.332.
- 10. Perry JJ, Stiell IG, Sivilotti ML, et al. Clinical decision rules to rule out subarachnoid hemorrhage for acute headache. *The Journal of the American Medical Association*. 2013;310: 1248–1255.
- 11. Perry JJ, Sivilotti MLA, Sutherland J, et al. Validation of the Ottawa Subarachnoid Hemorrhage Rule in patients with acute headache. *Canadian Medical Association Journal*. 2017;189(45): E1379-E1385. doi: 10.1503/cmaj.170072.
- 12. Dubosh NM, Bellolio MF, Rabinstein AA, et al. Sensitivity of early brain computed tomography to exclude aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis. *Stroke*. 2016;47(3): 750-755.
- 13. Walton M, Hodgson R, Eastwood A, et al. Management of patients presenting to the emergency department with sudden onset severe headache: systematic review of diagnostic accuracy studies. *Emergency Medicine Journal*. 2022;39: 818–825. doi: 10.1136/emermed-2021-211900.
- 14. Agid R, Andersson T, Almqvist H, et al. Negative CT angiography findings in patients with spontaneous subarachnoid hemorrhage: when is digital subtraction angiography still needed? *American Journal of Neuroradiology*. 2010;31(4): 696-705.

- 15. Hunt WE, Hess RM. Surgical risk as related to time of intervention in the repair of intracranial aneurysms. *Journal of Neurosurgery*. 1968;28(1): 14-20. doi: 10.3171/jns.1968.28.1.0014.
- 16. Teasdale GM, Drake CG, Hunt W, et al. Universal subarachnoid hemorrhage scale: report of a committee of the World Federation of Neurosurgical Societies. *Journal of Neurology, Neurosurgery, and Psychiatry*. 1988;51(11): 1457-1463. doi: 10.1136/jnnp.51.11.1457.
- 17. Yasargil MG. Microneurosurgery. Verlag Stuttgart: Georg Thieme; 1984;2: 7-12.
- 18. Tagaki K, Tamura A. How should a subarachnoid hemorrhage grading scale be determined? A combinatorial approach based solely on the Glasgow Coma Scale. *Journal of Neurosurgery*. 1999;90: 680–687.
- 19. Fisher CM, Kistler JP, Davis JM. Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by CT scanning. *Neurosurgery*. 1980;6: 1–9.
- 20. Tawk RG, Hasan TF, D'Souza CE, et al. Diagnosis and Treatment of Unruptured Intracranial Aneurysms and Aneurysmal Subarachnoid Hemorrhage. *Mayo Clinic Proceedings*. 2021;96(7): 1970-2000. doi: 10.1016/j.mayocp.2021.01.005.
- 21. Larsen CC, Astrup J. Rebleeding after aneurysmal subarachnoid hemorrhage: a literature review. *World Neurosurgery*. 2013;79(2): 307-312. doi: 10.1016/j.wneu.2012.06.023.
- 22. van Donkelaar CE, Bakker NA, Veeger NJ, et al. Predictive Factors for Rebleeding After Aneurysmal Subarachnoid Hemorrhage: Rebleeding Aneurysmal Subarachnoid Hemorrhage Study. *Stroke*. 2015;46(8): 2100-2106. doi: 10.1161/STROKEAHA.115.010037.
- 23. Guo LM, Zhou HY, Xu JW, et al. Risk factors related to aneurysmal rebleeding. *World Neurosurgery*. 2011;76(3-4): 292-298. doi: 10.1016/j.wneu.2011.03.025.
- 24. Macdonald RL, Schweizer TA. Spontaneous subarachnoid hemorrhage. *The Lancet*. 2017;389(10069): 655-666. doi: 10.1016/S0140-6736(16)30668-7.
- 25. Anderson CS, Heeley E, Huang Y, et al. INTERACT2 Investigators. Rapid blood-pressure lowering in patients with acute intracerebral hemorrhage. *The New England Journal of Medicine*. 2013;368(25): 2355-2365. doi: 10.1056/NEJMoa1214609.
- 26. Qureshi AI, Palesch YY, Barsan WG, et al. ATACH-2 Trial and the Neurological Emergency Treatment Trials Network. Intensive blood-pressure lowering in patients with acute cerebral hemorrhage. *The New England Journal of Medicine*. 2016;375: 1033–1043. doi: 10.1056/NEJMoa1603460.
- 27. Greenberg SM, Ziai WC, Cordonnier C, et al. 2022 Guideline for the Management of Patients with Spontaneous Intracerebral Hemorrhage: A Guideline from the American Heart Association/American Stroke Association. *Stroke*. 2022;53(7): e282-e361. doi: 10.1161/STR.00000000000000407.
- 28. Minhas JS, Moullaali TJ, Rinkel GJE, et al. Blood Pressure Management After Intracerebral and Subarachnoid Hemorrhage: The Knowns and Known Unknowns. *Stroke*. 2022;53(4): 1065-1073. doi: 10.1161/STROKEAHA.121.036139.
- 29. Connolly ES Jr, Rabinstein AA, Carhuapoma JR, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. *Stroke*. 2012;43: 1711–1737.
- 30. Doherty JU, Gluckman TJ, Hucker WJ, et al. 2017 ACC Expert Consensus Decision Pathway for Periprocedural Management of Anticoagulation in Patients with

- Nonvalvular Atrial Fibrillation: A Report of the American College of Cardiology Clinical Expert Consensus Document Task Force. *Journal of the American College of Cardiology*. 2017;69(7): 871-898. doi: 10.1016/j.jacc.2016.11.024.
- 31. Steiner T, Poli S, Griebe M, et al. Fresh frozen plasma versus prothrombin complex concentrate in patients with intracranial hemorrhage related to vitamin K antagonists (INCH): a randomised trial. *The Lancet Neurology*. 2016;15: 566–573. doi: 10.1016/S1474-4422(16)00110-1.
- 32. Sarode R, Milling TJ, Refaai MA, et al. Efficacy and safety of a 4-factor prothrombin complex concentrate in patients on vitamin K antagonists presenting with major bleeding: a randomized, plasma-controlled, phase IIIb study. *Circulation*. 2013;128: 1234–1243. doi: 10.1161/CIRCULATIONAHA.113.002283.
- 33. Baker RI, Coughlin PB, Gallus AS, et al. Warfarin Reversal Consensus Group. Warfarin reversal: consensus guidelines, on behalf of the Australasian Society of Thrombosis and Haemostasis. *The Medical Journal of Australia*. 2004;181(9): 492-497. doi: 10.5694/j.1326-5377.2004.tb06407.x.
- 34. Pollack CV, Reilly PA, Eikelboom J, et al. Idarucizumab for dabigatran reversal. *New England Journal of Medicine*. 2015;373(6): 511-520. doi: 10.1056/NEJMoa1502000
- 35. Shih AW, Crowther MA. Reversal of direct oral anticoagulants: a practical approach. *Hematology, The Journal of the American Society of Hematology.* 2016;2016(1): 612-619. doi: 10.1182/asheducation-2016.1.612.
- 36. Majeed A, Ågren A, Holmström M, et al. Management of rivaroxaban-or apixaban-associated major bleeding with prothrombin complex concentrates: a cohort study. *Blood, The Journal of the American Society of Hematology.* 2017;130(15): 1706-1712.
- Lu G, DeGuzman FR, Hollenbach SJ, et al. A specific antidote for reversal of anticoagulation by direct and indirect inhibitors of coagulation factor Xa. *Nature Medicine*. 2013;19: 446–451.
- 38. Ammar AA, Ammar MA, Owusu KA, et al. Andexanet alfa versus 4-factor prothrombin complex concentrate for reversal of factor Xa inhibitors in intracranial hemorrhage. *Neurocritical Care.* 2021;35: 255–261. doi: 10.1007/s12028-020-01161-5.
- 39. Schulman S, Bijsterveld NR. Anticoagulants and their reversal. Transfusion Medicine Reviews. 2007;21(1): 37-48. doi: 10.1016/j.tmrv.2006.08.002.
- 40. Post R, Germans MR, Tjerkstra MA, et al. Ultra-early tranexamic acid after subarachnoid hemorrhage (ULTRA): a randomized controlled trial. *The Lancet*. 2021;397(10269):112-118.
- 41. Spetzler RF, McDougall CG, Albuquerque FC, et al. The barrow ruptured aneurysm trial: 3-year results. *Journal of Neurosurgery*. 2013;119(1): 146-157.
- 42. Mitchell P, Kerr R, Mendelow AD, et al. Could late rebleeding overturn the superiority of cranial aneurysm coil embolization over clip ligation seen in the International Subarachnoid Aneurysm Trial? *Journal of Neurosurgery*. 2008;108(3): 437-442.
- 43. Lanzino G, Kongable GL, Kassell NF. Electrocardiographic abnormalities after nontraumatic subarachnoid hemorrhage. *Journal of Neurosurgical Anesthesiology*. 1994;6(3): 156-162. doi: 10.1097/00008506-199407000-00002.
- 44. Andreoli A, di Pasquale G, Pinelli G, et al. Subarachnoid hemorrhage: frequency and severity of cardiac arrhythmias. A survey of 70 cases studied in the acute phase. *Stroke*. 1987;18(3): 558-564. doi: 10.1161/01.str.18.3.558.

- 45. Capes SE, Hunt D, Malmberg K, et al. Stress hyperglycemia and prognosis of stroke in nondiabetic and diabetic patients: a systematic overview. *Stroke*. 2001;32: 2426–2432.
- 46. Frontera JA, Fernandez A, Claassen J, et al. Hyperglycemia after SAH: predictors, associated complications, and impact on outcome. *Stroke*. 2006;37(1): 199-203. doi: 10.1161/01.STR.0000194960.73883.0f.
- 47. Magee CA, Thompson Bastin ML, Graves K, et al. Fever Burden in Patients with Subarachnoid Hemorrhage and the Increased Use of Antibiotics. *Journal of Stroke and Cerebrovascular Diseases*. 2019;28(11): 104313. doi: 10.1016/j.jstrokecerebrovasdis.
- 48. Naidech AM, Kreiter KT, Janjua N, et al. Phenytoin exposure is associated with functional and cognitive disability after subarachnoid hemorrhage. *Stroke*. 2005;36(3): 583-587. doi: 10.1161/01.STR.0000141936.36596.1e.
- 49. Kshettry VR, Rosenbaum BP, Seicean A, et al. Incidence and risk factors associated with in-hospital venous thromboembolism after aneurysmal subarachnoid hemorrhage. *Journal of Clinical Neuroscience*. 2014;21(2): 282-286. doi: 10.1016/j.jocn.2013.07.003.
- 50. Pan X, Li J, Xu L, et al. Safety of prophylactic heparin in the prevention of venous thromboembolism after spontaneous intracerebral hemorrhage: a meta-analysis. *Journal of Neurological Surgery Part A: Central European Neurosurgery.* 2020;81(03): 253-260.
- 51. See AP, Wu KC, Lai PM, et al. Risk factors for hyponatremia in aneurysmal subarachnoid hemorrhage. *Journal of Clinical Neuroscience*. 2016;32: 115-118. doi: 10.1016/j.jocn.2016.04.006.
- 52. Harrigan MR: Cerebral salt wasting syndrome: a review. *Neurosurgery*. 1996;38: 152-160
- 53. Lee KH, Lukovits T, Friedman JA. "Triple-H" therapy for cerebral vasospasm following subarachnoid hemorrhage. *Neurocritical Care*. 2006;4(1): 68-76. doi: 10.1385/NCC:4:1:068.
- 54. Hasan D, Lindsay KW, Wijdicks EF, et al. Effect of fludrocortisone acetate in patients with subarachnoid hemorrhage. *Stroke*. 1989;20(9): 1156-1161.
- 55. Roos YB, de Haan RJ, Beenen LF, et al. Complications and outcome in patients with aneurysmal subarachnoid hemorrhage: a prospective hospital-based cohort study in the Netherlands. *Journal of Neurology, Neurosurgery & Psychiatry*. 2000;68: 337–341.
- 56. Vergouwen MD, Vermeulen M, van Gijn J, et al. Definition of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage as an outcome event in clinical trials and observational studies: proposal of a multidisciplinary research group. *Stroke*. 2010;41(10): 2391-2395. doi: 10.1161/STROKEAHA.110.589275.
- 57. Allen GS, Ahn HS, Preziosi TJ, et al. Cerebral arterial spasm: a controlled trial of nimodipine in patients with subarachnoid hemorrhage. *New England Journal of Medicine*. 1983;308: 619–624. doi: 10.1056/NEJM198303173081103.
- 58. Muench E, Horn P, Bauhuf C, et al. Effects of hypervolemia and hypertension on regional cerebral blood flow, intracranial pressure, and brain tissue oxygenation after subarachnoid hemorrhage. *Critical Care Medicine*. 2007;35: 1844–1851.
- 59. Hoh BL, Ogilvy CS. Endovascular treatment of cerebral vasospasm: transluminal balloon angioplasty, intra-arterial papaverine and intra-arterial nicardipine. *Neurosurgery Clinics of North America*. 2005;16: 501–516.
- 60. Woods KS, Horvat CM, Kantawala S, et al. Intracranial and Cerebral Perfusion Pressure Thresholds Associated with Inhospital Mortality Across Pediatric

- Neurocritical Care. *Pediatric Critical Care Medicine*. 2021;22(2): 135-146. doi: 10.1097/PCC.0000000000002618.
- 61. Freeman WD. Management of Intracranial Pressure. *Continuum*. 2015;21(5): 1299-1323. doi: 10.1212/CON.000000000000235.
- 62. Desai P, Prasad K. Dexamethasone is not necessarily unsafe in primary supratentorial intracerebral hemorrhage. *Journal of Neurology, Neurosurgery & Psychiatry*. 1998;65(5): 799-801.
- 63. Claassen J, Peery S, Kreiter KT, et al. Predictors and clinical impact of epilepsy after subarachnoid hemorrhage. *Neurology*. 2003;60(2): 208-14.
- 64. Naidech AM, Kreiter KT, Janjua N, et al. Phenytoin exposure is associated with functional and cognitive disability after subarachnoid hemorrhage. *Stroke*. 2005;36(3): 583-587. doi: 10.1161/01.STR.0000141936.36596.1e.
- 65. Kodankandath TV, Farooq S, Wazni W, et al. Seizure Prophylaxis in the Immediate Post-Hemorrhagic Period in Patients with Aneurysmal Subarachnoid Hemorrhage. *Journal of Vascular and Interventional Neurology*. 2017;9(6): 1-4.

CHAPTER 4

APPROACH TO DEHYDRATION IN CHILDREN

Sadiye SERT¹

Introduction

Dehydration due to gastroenteritis in children is a common condition. Paediatricians can assess the extent of dehydration through a history and physical examination. The severity of electrolyte imbalances and dehydration may be assessed using the results of laboratory tests conducted on a sample of severe cases. The first choice should be oral rehydration solution when a child can be fed orally and has just mild dehydration. Severe dehydration in infants can be deadly or very morbid. In order to restore the whole fluid deficit in severe situations, it should be treated straight soon via parenteral route. Dehydration in children has a good prognosis when properly treated.

Definition

Dehydration is a condition characterized by a significant loss of body water (1). As for volume depletion or hypovolemia, it refers to a decrease in circulating volume. However, they are often used interchangeably. While dehydration accompanies hypernatremia, water and salt loss may occur in hypovolemia (2).

Etiology

The most typical cause of dehydration in children is diarrheal disease. Dehydration is linked to several other paediatric diseases. Dehydration can also result from the flu, gingivitis, urinary tract infections, and certain bacterial infections (2-4). Water deficiency (i.e., diabetes insipidus), increased insensible losses, inadequate fluid intake, and water and salt deficiencies are other causes of dehydration (1, 3, 5).

MD, Department of Paediatrics, Konya Beyhekim Training and Research Hospital sadiyesert@yahoo.com.tr ORCID iD: 0000-0002-1394-935X

At the end of the rehydration period, both hypernatremia and hyponatremia have usually resolved.

When the hydration status is re-evaluated at the end of 4 hours, if there are signs of dehydration, the volume deficit is completed and then the maintenance phase is started. Replacement of losses with continued stool and vomiting can be achieved with an ORS. Oral ondansetron (0.15 mg/kg) can be administered to reduce vomiting (39). During this phase, ORS or breast milk, undiluted lactose-free formula and other appropriate nutrients can be given (3, 5).

Intravenous Rehydration

Intravenous fluid therapy is required for patients who are unresponsive, unable to swallow, suffering from paralytic ileus, severe hypovolemia, or abnormal electrolytes (8). Most dehydrated children can be properly rehydrated without resorting to intravenous therapy. Severe cases should first be treated with parenteral fluids via intravenous route or, if indicated, via intraosseous route (40). While seeking the parenteral route, a nasogastric infusion of ORS (30 mL/kg/hr) can be managed provided airway protective reflexes are not impaired. Patients treated via parenteral route should be given rapid boluses of 0.9% sodium chloride (20 mL/kg) for not more than 20 minutes. In particularly severe cases, it is not uncommon for patients to require 60 to 100 mL/kg before restoration of circulatory volume becomes apparent. If the child is conscious and has good respiratory protective reflexes, enteral fluid therapy with an oral or nasogastric tube can be started immediately (35, 38). Use of hypotonic fluids during the maintenance phase of intravenous replacement may cause iatrogenic hyponatremia (3, 41).

- 1. Vega RM, Avva U. Pediatric Dehydration. 2022 Nov 3. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. PMID: 28613793.
- 2. Steiner MJ, DeWalt DA, Byerley JS. Is this child dehydrated? *Journal of the American Medical Association*. 2004; 291 (22): 2746-2754. doi: 10.1001/jama.291.22.2746.
- 3. Mahajan P, Dehydration. In: McInerny TK, Adam HM, Campbell DE, DeWitt TG, Foy JM, Kamat DM, eds. American Academy of Pediatrics Textbook of Pediatric Care. 2nd ed. Elk Grove Village, IL: American Academy of Pediatrics; 2017. p.2805-2813.
- 4. Santillanes G, Rose E. Evaluation and Management of Dehydration in Children. *Emergency medicine clinics of North America*. 2018;36(2): 259-273.doi:10.1016/j. emc.2017.12.004.
- 5. Powers KS. Dehydration: Isonatremic, Hyponatremic, and Hypernatremic Recognition and Management. *Pediatrics in review*. 2015;36(7): 274-283. doi: 10.1542/pir.36-7-274.

- 6. Whitehead FJ, Couper RT, Moore L, et al. Dehydration deaths in infants and young children. *The American journal of forensic medicine and pathology*. 1996;17(1): 73-78. doi: 10.1097/0000433-199603000-00014.
- 7. Omatola CA, Olaniran AO. Rotaviruses: From Pathogenesis to Disease Control-A Critical Review. *Viruses*. 2022;14(5): 875. doi: 10.3390/v14050875
- 8. Guarino A, Ashkenazi S, Gendrel D, et al; European Society for Pediatric Gastroenterology, Hepatology, and Nutrition; European Society for Pediatric Infectious Diseases. European Society for Pediatric Gastroenterology, Hepatology, and Nutrition/European Society for Pediatric Infectious Diseases evidence-based guidelines for the management of acute gastroenteritis in children in Europe: update 2014. *Journal of pediatric gastroenterology and nutrition*. 2014;59(1): 132-152. doi: 10.1097/MPG.0000000000000375.
- 9. Zieg J, Narla D, Gonsorcikova L, et al. Fluid management in children with volume depletion. *Pediatric Nephrology*. 2023 Jul 14. doi: 10.1007/s00467-023-06080-z. Epub ahead of print. PMID: 37452205.
- 10. Colletti JE, Brown KM, Sharieff GQ, et al. The management of children with gastroenteritis and dehydration in the emergency department. *The Journal of emergency medicine*. 2010;38(5): 686–698. doi: 10.1016/j.jemermed.2008.06.015.
- 11. King CK, Glass R, Bresee JS, et al, Centers for Disease Control and Prevention. Managing acute gastroenteritis among children: oral rehydration, maintenance, and nutritional therapy. *MMWR. Recommendations and reports.* 2003;52(RR-16): 1-16.
- 12. Hoxha TF, Azemi M, Avdiu M, et al. The usefulness of clinical and laboratory parameters for predicting severity of dehydration in children with acute gastroenteritis. *Medical archives*. 2014;68: 304–305. doi: 10.5455/medarh.2014.68.304-307.
- 13. Canavan A, Arant BS Jr. Diagnosis and management of dehydration in children. *American family physician*.2009;80(7): 692-696.
- 14. Porter SC, Fleisher GR, Kohane IS, et al. The value of parental report for diagnosis and management of dehydration in the emergency department. *Annals of emergency medicine*.2003;41(2): 196-205. doi: 10.1067/mem.2003.5.
- 15. Armon K, Stephenson T, MacFaul R, et al. An evidence and consensus based guideline for acute diarrhoea management. *Archives of disease in childhood*. 2001;85(2): 132-142. doi: 10.1136/adc.85.2.132.
- 16. Gorelick MH, Shaw KN, Murphy KO, et al. Effect of fever on capillary refill time. *Pediatric emergency care.* 1997;13(5): 305-307. doi: 10.1097/00006565-199710000-00001.
- 17. Greenbaum LA, Deficit Therapy.In: Kliegman RM, Joseph WSG, Blum NJ, et al. *Nelson textbook of pediatrics*. 21st ed. Philadelphia, PA: Elsevier; 2020. p. 429-432.e1
- 18. Friedman JN, Goldman RD, Srivastava R, et al. Development of a clinical dehydration scale for use in children between 1 and 36 months of age. *The Journal of pediatrics*. 2004;145(2): 201-207. doi: 10.1016/j.jpeds.2004.05.035.
- 19. Chen L, Kim Y, Santucci KA. Use of ultrasound measurement of the inferior vena cava diameter as an objective tool in the assessment of children with clinical dehydration. *Academic emergency medicine*. 2007;14(10): 841-845. doi: 10.1197/j.aem.2007.06.040.
- 20. Somers MJ. Clinical assessment of hypovolemia (dehydration) in children. https://www.uptodate.com/contents/clinical-assessment-of-hypovolemia-dehydration-in-children?search=dehydration%20in%20children&source=search_

- result&selectedTitle=1~150&usage_type=default&display_rank=1(Accessed 15th August 2023.)
- 21. McConnochie KM, Conners GP, Lu E, et al. How commonly are children hospitalized for dehydration eligible for care in alternative settings? *Archives of pediatrics & adolescent medicine*.1999;153: 1233-1241. doi: 10.1001/archpedi.153.12.1233.
- 22. Jackson J, Bolte RG. Risks of intravenous administration of hypotonic fluids for pediatric patients in ED and prehospital settings: let's remove the handle from the pump. *The American journal of emergency medicine*. 2000;18: 269-270. doi: 10.1016/s0735-6757(00)90119-0.
- 23. Ayus JC, Arieff AI. Hyponatremia and myelinolysis. *Annals of internal medicine*.1997; 127: 163. 10.7326/0003-4819-127-2-199707150-00016
- 24. Moineau G, Newman J. Rapid intravenous rehydration in the pediatric emergency department. *Pediatric emergency care*. 1990;6: 186-188. doi: 10.1097/00006565-199009000-00005.
- 25. Rahman O, Bennish ML, Alam AN, Salam MA. Rapid intravenous rehydration by means of a single polyelectrolyte solution with or without dextrose. The Journal of paediatrics. 1988; 113: 654-660. doi: 10.1016/s0022-3476(88)80374-3.
- 26. Reid SR, Bonadio WA. Outpatient rapid intravenous rehydration to correct dehydration and resolve vomiting in children with acute gastroenteritis. *Annals of emergency medicine*. 1996; 28: 318-323. doi: 10.1016/s0196-0644(96)70032-x.
- 27. Strange K. Regulation of solute and water balance and cell volume in the central nervous system. *Journal of the American Society of Nephrology*. 1992; 3: 12-27. doi: 10.1681/ASN.V3112.
- 28. Schwartz R. Comments from another student of Gamble and Darrow on fluids. *Pediatrics*. 1996; 98(2Pt1): 314.
- 29. Sterns RH, Cappuccio JD, Silver SM, et al. Neurologic sequelae after treatment of severe hyponatremia: a multicenter perspective. *Journal of the American Society of Nephrology.* 1994; 4: 1522-1530. doi: 10.1681/ASN.V481522.
- 30. Somers MJ. Treatment of hypovolemia (dehydration) in children in resource-rich settings. https://www.uptodate.com/contents/treatment-of-hypovolemia-dehydration-inchildren-in-resourcerichsettings?search=Treatment%20of%20 hypovolemia%20(dehydration)%20in%20children%20in%20resourcerich%20 settings&source=search_result&selectedTitle=1~150&usage_type=default&display_rank=1 (Accessed 15th August 2023.)
- 31. Berl T. Treating hyponatremia: damned if we do and damned if we don't. *Kidney international*.1990; 37: 1006-1018. doi: 10.1038/ki.1990.78.
- 32. Karp BI, Laureno R. Pontine and extrapontine myelinolysis: a neurologic disorder following rapid correction of hyponatremia. *Medicine (Baltimore)*. 1993; 72:359-373
- 33. Finberg L. Hypernatremic (hypertonic) dehydration in infants. *The New England journal of medicine*. 1973; 289: 196-198. doi: 10.1056/NEJM197307262890407.
- 34. Blum D, Brasseur D, Kahn A, et al. Safe oral rehydration of hypertonic dehydration. *Journal of pediatric gastroenterology and nutrition*.1986; 5: 232-235.
- 35. Practice parameter: the management of acute gastroenteritis in young children. American Academy of Pediatrics, Provisional Committee on Quality Improvement, Subcommittee on Acute Gastroenteritis. *Pediatrics*. 1996; 97: 424-435.

- 36. Buccigrossi V, Lo Vecchio A, Bruzzese E, et al. Potency of Oral Rehydration Solution in Inducing Fluid Absorption is Related to Glucose Concentration. *Scientific reports*. 2020;10(1):7803. doi: 10.1038/s41598-020-64818-3.
- 37. World Health Organization. Reduced osmolarity: oral rehydration salts (ORS) formulation: a report from a meeting of experts jointly organised by UNICEF and WHO: UNICEF house, New York, USA, 18 July 2001. No. WHO/FCH/CAH/01.22. World Health Organization, 2002.
- 38. Fonseca BK, Holdgate A, Craig JC. Enteral vs intravenous rehydration therapy for children with gastroenteritis: a meta-analysis of randomized controlled trials. *Archives of pediatrics & adolescent medicine*. 2004;158(5): 483-490. doi: 10.1001/archpedi.158.5.483.
- 39. Freedman SB, Hall M, Shah SS, et al. Impact of increasing ondansetron use on clinical outcomes in children with gastroenteritis. *Journal of the American Medical Association pediatrics*. 2014;168(4): 321-329. doi: 10.1001/jamapediatrics.2013.4906
- 40. Rouhani S, Meloney L, Ahn R, et al. Alternative rehydration methods: a systematic review and lessons for resource-limited care. *Pediatrics*. 2011; 127(3):e748-757. doi: 10.1542/peds.2010-0952.
- 41. Hanna M, Saberi MS. Incidence of hyponatremia in children with gastroenteritis treated with hypotonic intravenous fluids. *Pediatric Nephrology*. 2010;25(8):1471–1475. doi: 10.1007/s00467-009-1428-y.

CHAPTER 5

ACUTE ABDOMINAL PAIN

İbrahim GÜVEN¹

Introduction

Acute abdominal pain is defined as abdominal pain with an onset of less than one week, with symptoms concentrated in the abdomen in patients with no known abdominal trauma and, for female patients, a gestational age of less than 20 weeks (1).

It is one of the most common (5-10%) causes of emergency department visits, and the cause is unknown in 42% of cases (2). Hospitalization rates for patients presenting with abdominal pain to the emergency department range from 20% to 40% (3). This rate is higher (60%) in the elderly population (4).

Abdominal pain can be classified neuroanatomically into three categories: Visceral pain, parietal pain, and reflected pain (5,6,7):

Visceral Paina

Visceral pain results from irritation of the visceral peritoneum, which is innervated by autonomic nerves. It is often caused by distention of intra-abdominal organs and muscle contractions. The pain is typically dull, uncomfortable, and poorly localized. Since the fibers innervating the visceral peritoneum are segmentally distributed, visceral pain is localized by the sensory cortex. In addition, due to bilaterally innervated intraperitoneal organs, stimuli are relayed to both sides of the spinal cord. This is why visceral pain is felt in the midline, regardless of the anatomical location of the organ.

Parietal Pain

Parietal pain occurs when the parietal peritoneum is stimulated, such as when an inflamed organ comes into contact with the parietal peritoneum. The parietal peritoneum is innervated by somatic nerves, so this pain is also known as somatic

MD, Bozuyuk State Hospital, Department of Emergency Medicine, dr.guven.86@gmail.com, ORCID iD: 0009-0001-0662-3001

- 1. Jangland E, Kitson A, Muntlin Athlin A. Patients with acute abdominal pain describe their experiences of fundamental care across the acute care episode: a multistage qualitative case study. *Journal of Advanced Nursing*. 2015; 72(4):791-801.
- 2. Esses D, Birnbaum A, Bijur P, Shah S, Gleyzer A, Gallagher EJ. Ability of CT to alter decision making in elderly patients with acute abdominal pain. *Am J Emerg Med.* 2004; 22: 270-272.
- 3. Koç F, Kekeç Z. Acil servise başvuran geriatric olgularının nörolojik yönden değerlendirilmesi. *Turkish Journal of Geriatrics*. 2011; 14:117-21.
- 4. Tekin F, İlter T. Birinci basamakta akut karın ağrısı olan hastaya yaklaşım. *Güncel Gastroenteroloji*. 2015;16(3):161-70.
- 5. Demir M. Karın Ağrısı Olan Hastaya Yaklaşım. Klinik Tıp Bilimleri. 2017; 5(2): 39-50.
- 6. Emet M, Eroğlu M, Aslan Ş, Öztürk G. Karın ağrısı olan hastaya yaklaşım. *Eurasian J Med*. 2007; 39: 136-41.
- 7. Sayılan AA, Ak ES, Özbaş A. Akut karın ağrısı ve hemşirelik bakımı. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi. 2017; 2(3): 45-49.
- 8. Brown HF, Kelso L. Abdominal pain: an approach to a challenging diagnosis. *AACN Advanced Critical Care*. 2014; 25(3):266-78.
- 9. Abdullah M, Firmansyah MA. Diagnostic approach and management of acute abdominal pain. *Acta Medica Indonesiana*. 2012; 44(4):344-50.
- 10. Avegno J, Carlisle M. Evaluating the patient with right upper quadrant abdominal pain. *Emergency Medicine Clinic North America*. 2016;34(2):211-28.
- 11. Aslan N, Baydin A, Yücel M, Yurumez Y, Ercan B. Acil Serviste Akut Karın Ağrısı Yönetimi: Cerrahi Ya Da Cerrahi Olmayan Karın Ağrıları. *Online Türk Sağlık Bilimleri Dergisi*. 2021; *6*(2), 224-235.
- 12. Çaliskan M. et al. Acil Cerrahi Polikliniğine Akut Karın Ağrısı ile Başvuran Hastaların Çok Yönlü Prospektif Değerlendirilmesi. *Journal of Academic Emergency Medicine/ Akademik Acil Tip Olgu Sunumlari Dergisi.* 2010; 2: 72-85.
- 13. Yardan T, Genç S, Baydın A, Nural MS, Aydın, M, Aygün D. Acil serviste akut pankreatit tanısı alan hastaların değerlendirilmesi. *Fırat Tıp Dergisi*. 2019; *14*(2): 124-128.
- 14. Indiran V. Acute pelvic pain in female with ruptured ectopic pregnancy: Magnetic Resonance Imaging as problem solving tool. *Turkish Journal of Emergency Medicine*. 2016;16(2):89-90.
- 15. Elbi H, Bilge A, İrik, M. Geriatrik Hastada Karın Ağrısı Ayırıcı Tanısı: Kendini Sınırlayan Abdominal Aort Anevrizması Rüptürü. *Tepecik Eğit. ve Araşt. Hast. Dergisi.* 2018;28(1):62-64.
- 16. Çınar H. Karın Ağrısı Olan Hastaların Değerlendirilmesinde Karın Grafisinin Yeri. *Klinik Tıp Aile Hekimliği*.2017; 9(1), 10-43.
- 17. Hasbahçeci M, Başak F, Alimoğlu O. Akut karın ağrısının değerlendirilmesinde direkt karın grafisinin yeri. *Turkish Journal of Surgery*. 2012; *28*(1), 061-064.
- 18. Aygencel G, Yılmaz U, Karamercan M, Karamercan A, İlhan M.N. Acil Serviste Karin Ağrisini Değerlendirmenin Maliyeti. *Gazi Medical Journal*, 2009; *20*(1).

Chapter 6

CURRENT APPROACH TO KIDNEY STONE DISEASES IN THE EMERGENCY DEPARTMENT

Burak AKIN¹

Introduction

The primary focus of emergency medicine management involves the alleviation of pain, evaluation of renal function, and assessment of the probability of spontaneous passing of urinary stones. The occurrence of this phenomenon is influenced by various factors including geographic location, cultural background, dietary habits, and genetic predisposition. The condition has a global prevalence of approximately 20% and exhibits a recurrence rate of 50% (1).

The prevalence rates for renal calculi in the United States are reported to be 11% in men and 7% in women. Furthermore, the incidence of kidney stones has shown a consistent increase across all age groups and genders (2). Approximately 70% of ureteral calculi cases are observed in adults between the ages of 20 and 50 years, with a higher incidence recorded in regions characterized by hot or arid climates.

Pathophysiology

The process of stone production necessitates the presence of a state of supersaturation in the urine, wherein dissolved ions exceed their solubility limit and then precipitate into a solid phase. Enhancing the volume of solvent (urine) while reducing the quantity of solute substances (such as uric acid, calcium, oxalate) sent to the renal system can contribute to preventive measures. Certain chemicals, such as citrate and magnesium, have the ability to impede the process of crystal precipitation and the subsequent production of stones.

Approximately 80% of calculi consist of calcium oxalate, calcium phosphate, or a mix of the two. Conditions such as immobilization syndrome, hyperparathyroidism, absorptive and renal hypercalciuria are associated with

MD., Bağcılar Education and Research Hospital, Department of Emergency Medicine, burakakin3232@ hotmail.com, ORCID iD: 0000-0003-2515-5482

and AUA for getting rid of distal ureteral stones when there is no reason to do surgery right away.

Most of the time, opiate painkillers are used to treat pregnant patients because NSAIDs are not safe for them (20). Since nifedipine is safe to use during pregnancy, it has been suggested as a MET for pregnant women (20), but its effectiveness in the general population has been questioned (21). The safety of alpha blockers during pregnancy is not known.

Conclusion

The three main factors that can be used to forecast the successful transit of stones without the requirement of surgical intervention are the size of the calculus, its location, and the level of discomfort experienced by the patient. The primary determinant influencing the successful transit of a calculus through the genitourinary tract is its size. Calculi measuring less than 5 mm in diameter have a 90% probability of spontaneous passage within a four-week timeframe.

However, not every patient with renal colic needs imaging. Imaging is recommended when a high-grade obstruction is suspected, or when the symptoms are not typical, the diagnosis is uncertain, the patient has a single kidney or a kidney transplant, or if the patient appears toxic.

Patients who apply to the emergency department with kidney stones should be diagnosed quickly and should be reassured immediately. Meanwhile, differential diagnoses that can be fatal should not be overlooked.

- 1. Türk C, Petřík A, Sarica K, et al. EAU Guidelines on Diagnosis and Conservative Management of Urolithiasis. *European Urology*. 2016; 69(3): 468-474.
- 2. Ghani KR, Roghmann F, Sammon JD, et al. Emergency department visits in the United States for upper urinary tract stones: trends in hospitalization and charges. *The Journal of Urology*. 2014; 191(1): 90-96.
- 3. Sakhaee K. Recent advances in the pathophysiology of nephrolithiasis. *Kidney International*. 2009; 75(6): 585-595.
- Fink HA, Wilt TJ, Eidman KE, et al. Recurrent nephrolithiasis in adults: comparative effectiveness of preventive medical strategies. Comparative Effectiveness Review No. 61. AHRQ Publication No. 12-EHC049-EF. Rockville, MD: Agency for Healthcare Research and Quality, 2013.
- 5. Teichman JM. Clinical practice. Acute renal colic from ureteral calculus. *The New England Journal of Medicine*. 2004; 350(7): 684-693.
- 6. Dundee P, Bouchier-Hayes D, Haxhimolla H, et al. Renal tract calculi: comparison of stone size on plain radiography and noncontrast spiral CT scan. *Journal of Endourology*. 2006; 20(12): 1005-1009.

- 7. Eskelinen M, Ikonen J, Lipponen P. Usefulness of history-taking, physical examination and diagnostic scoring in acute renal colic. *European Urology*. 1998; 34(6): 467-473.
- 8. Zanetti G, Paparella S, Trinchieri A, et al. Infections and urolithiasis: current clinical evidence in prophylaxis and antibiotic therapy. *The Archives of Italian Urology and Andrology*. 2008; 80(1): 5-12.
- 9. Dorfman M, Chan SB, Hayek K, Hill C. Pyuria and Urine Cultures in Patients with Acute Renal Colic. *The Journal of Emergency Medicine*. 2016; 51(4): 358-364.
- 10. Bove P, Kaplan D, Dalrymple N, et al. Reexamining the value of hematuria testing in patients with acute flank pain. *The Journal of Urology*. 1999; 162(3 Pt 1): 685-687.
- 11. Worcester EM, Parks JH, Evan AP, Coe FL. Renal function in patients with nephrolithiasis. *The Journal of Urology*. 2006; 176(2): 600-603.
- 12. Ather MH, Faizullah K, Achakzai I, et al. Alternate and incidental diagnoses on noncontrast-enhanced spiral computed tomography for acute flank pain. *Urology Journal*. 2009; 6(1): 14-18.
- 13. Pearle MS, Goldfarb DS, Assimos DG, et al. Medical management of kidney stones: AUA guideline. *The Journal of Urology*. 2014; 192(2): 316-324.
- 14. Fulgham PF, Assimos DG, Pearle MS, Preminger GM. Clinical effectiveness protocols for imaging in the management of ureteral calculous disease: AUA technology assessment. *The Journal of Urology*. 2013; 189(4): 1203-1213.
- 15. Smith-Bindman R, Aubin C, Bailitz J, et al. Ultrasonography versus computed tomography for suspected nephrolithiasis. *The New England Journal of Medicine*. 2014; 371(12): 1100-1110.
- 16. Ray AA, Ghiculete D, Pace KT, Honey RJ. Limitations to ultrasound in the detection and measurement of urinary tract calculi. *Urology*. 2010; 76(2): 295-300.
- 17. Worster AS, Bhanich Supapol W. Fluids and diuretics for acute ureteric colic. *Cochrane Database of Systematic Reviews*. 2012; (2): CD004926.
- 18. Fan B, Yang D, Wang J, et al. Can tamsulosin facilitate expulsion of ureteral stones? A meta-analysis of randomized controlled trials. *International Journal of Urology*. 2013; 20(8): 818-830.
- 19. Campschroer T, Zhu X, Vernooij RW, Lock MT. Alpha-blockers as medical expulsive therapy for ureteral stones. *Cochrane Database Systematic Reviews*. 2018; 4(4): CD008509.
- 20. Meher S, Gibbons N, DasGupta R. Renal stones in pregnancy. *Obstetric Medicine*. 2014; 7(3): 103-110.
- 21. Assimos D, Krambeck A, Miller NL, et al. Surgical Management of Stones: American Urological Association/Endourological Society Guideline, PART I. *The Journal of Urology*. 2016; 196(4): 1153-1160.

CHAPTER 7

CURRENT MANAGEMENT OF ACUTE CHOLECYSTITIS IN EMERGENCY

Burak AKIN¹

Introduction

Acute cholecystitis is a condition that is marked by the sudden onset of inflammation in the gallbladder. Gallstones give rise to various disease conditions, such as acute calculous cholecystitis, which exhibit significant variations in terms of their severity, clinical manifestation, and approaches to treatment. The prevalence of gallstones in the United States is reported to be 8% among males and 17% among females (1). The occurrence of a disease tends to rise as individuals get older and as their body mass index increases. Bariatric surgery increases the risk of developing gallstones (2). Most people with gallstones don't have any symptoms. When diagnostic imaging is being done for another reason, asymptomatic gallstones may be found. There is a 1-4% annual risk of having symptoms or complications (3).

Biliary colic is the prevailing complication related to gallstone disease. Patients frequently encounter repeated episodes of consistent upper abdominal pain, which usually endure for a brief period of time and resolve autonomously as the gallstone shifts away from its obstructive location. Acute cholecystitis can occur if the obstructing stone is left in place, causing the gallbladder to swell, become inflamed, and possibly get infected. Acute cholecystitis can become complicated by gangrenous cholecystitis, which is the gangrene and necrosis of the gallbladder wall. When gas-producing organisms infect a gallbladder that is already inflamed, the result is emphysematous cholecystitis. Perforation of the gallbladder is a rare but potentially fatal consequence of cholecystitis. Gallstones are not always necessary for the development of gangrenous cholecystitis, emphysematous cholecystitis, or perforation of the gallbladder. Gallstones in the common bile duct, also known as choledocholithiasis, can be either primary, meaning they

MD., Bağcılar Education and Research Hospital, Department of Emergency Medicine, burakakin3232@ hotmail.com, ORCID iD: 0000-0003-2515-5482

Although the association between bacterial infection and pathophysiology remains uncertain, it is nonetheless suggested to administer antibiotic therapy.

It is recommended to employ a combination of a third-generation cephalosporin and metronidazole, or alternatively, to utilize either a carbapenem or a β -lactamase inhibitor as standalone monotherapy.

Acalculous and emphysematous cholecystitis patients need an urgent cholecystectomy due to their higher risk of gangrene and perforation.

- 1. Everhart JE, Khare M, Hill M, et al. Prevalence and ethnic differences in gallbladder disease in the United States. *Gastroenterology*. 1999;117:632-639.
- 2. Li V, Pulido N, Fajnwaks P, et al. Predictors of gallstone formation after bariatric surgery: a multivariate analysis of risk factors comparing gastric bypass, gastric banding, and sleeve gastrectomy. *Surgical Endoscopy.* 2009;23:1640-1644.
- 3. Portincasa P, Moschetta A, Palasciano G. Cholesterol gallstone disease. *Lancet*. 2006;368:230-239.
- 4. O'Connell K, Brasel K. Bile metabolism and lithogenesis. Surgical Clinics of North America. 2014;94:361-375.
- 5. Behar J, Mawe G, Carey M. Roles of cholesterol and bile salts in the pathogenesis of gallbladder hypomotility and inflammation: cholecystitis is not caused by cystic duct obstruction. *Neurogastroenterology and Motility*. 2013;25:283-290.
- 6. Chang WT, Lee KT, Wang SR, et al. Bacteriology and antimicrobial susceptibility in biliary tract disease: an audit of 10-years' experience. *The Kaohsiung Journal of Medical Sciences*. 2002;18:221-228.
- 7. Asai K, Watanabe M, Kusachi S, et al. Bacteriological analysis of bile in acute cholecystitis according to the Tokyo guidelines. *Journal of Hepatobiliary Pancreatic Sciences*. 2012;19:476-486.
- 8. Tanaka A, Takada T, Kawarada Y, et al. Antimicrobial therapy for acute cholangitis: Tokyo guidelines. *Journal of Hepatobiliary Pancreatic Surgery*. 2007;14:59-67.
- 9. Rigas B, Torosis J, McDougall CJ, et al. The circadian rhythm of biliary colic. *Journal of Clinical Gastroenterology*. 1990;12:409-414.
- 10. Silen W, Cope Z: *Cope's Early Diagnosis of the Acute Abdomen*, 22nd ed. New York: Oxford University Press; 2010.
- 11. Trowbridge RL, Rutkowski NK, Shojania KG. Does this patient have acute cholecystitis? *JAMA*. 2003;289:80-86.
- 12. Yokoe M, Takada T, Strasberg S, et al. New diagnostic criteria and severity assessment of acute cholecystitis in revised Tokyo guidelines. *Journal of Hepatobiliary Pancreatic Sciences*. 2012;19:578-585.
- 13. Wada K, Takada T, Kawarada Y, et al. Diagnostic criteria and severity assessment of acute cholangitis: Tokyo guidelines. *Journal of Hepatobiliary Pancreatic Surgery*. 2007;14:52-58.
- 14. Reynolds BM, Dargan EL. Acute obstructive cholangitis; a distinct clinical syndrome. *Annals of Surgery.* 1959;150:299-303.

- 15. Peng WK, Sheikh Z, Paterson-Brown S, et al. Role of liver function tests in predicting common bile duct stones in acute calculous cholecystitis. *British Journal of Surgery*. 2005;92:1241-1247.
- 16. Nathwani RA, Kumar SR, Reynolds TB, et al. Marked elevation in serum transaminases: an atypical presentation of choledocholithiasis. *The American Journal of Gastroenterology.* 2005;100:295-298.
- 17. Yarmish GM, Smith MP, Rosen MP, et al. ACR appropriateness criteria right upper quadrant pain. *Journal of the American College of Radiology*. 2014;11:316-322.
- Kiewiet JJS, Leeuwenburgh MMN, Bipat S, et al. A systematic review and metaanalysis of diagnostic performance of imaging in acute cholecystitis. *Radiology*. 2012;264:708-720.
- 19. Ralls PW, Colletti PM, Lapin SA, et al. Real-time sonography in suspected acute cholecystitis. Prospective evaluation of primary and secondary signs. *Radiology*. 1985;155:767-771.
- 20. Ross M, Brown M, McLaughlin K, et al. Emergency physician–performed ultrasound to diagnose cholelithiasis: a systematic review. *Academic Emergency Medicine*. 2011;18:227-235.
- 21. Charalel RA, Jeffrey RB, Shin LK. Complicated cholecystitis: the complementary roles of sonography and computed tomography. *Ultrasound Quarterly*. 2011;27:161-170.
- 22. Gomi H, Solomkin JS, Takada T, et al. TG13 antimicrobial therapy for acute cholangitis and cholecystitis. *Journal of Hepatobiliary Pancreatic Sciences*. 2013;20:60-70.
- 23. Fuks D, Cosse C, Regimbeau JM. Antibiotic therapy in acute calculous cholecystitis. *Journal of Visceral Surgery.* 2013;150:3-8.
- 24. Solomkin JS, Mazuski JE, Bradley JS, et al. Diagnosis and management of complicated intra-abdominal infection in adults and children: guidelines by the Surgical Infection Society and the Infectious Diseases Society of America. *Clinical Infectious Diseases*. 2010;50:133-164.
- 25. Mazeh H, Mizrahi I, Dior U, et al. Role of antibiotic therapy in mild acute calculus cholecystitis: a prospective randomized controlled trial. *World Journal of Surgery*. 2012;36:1750-1759.
- 26. Mentzer RM Jr, Golden GT, Chandler JG, et al. A comparative appraisal of emphysematous cholecystitis. *The American Journal of Surgery.* 1975;129:10-15.
- 27. Rigler LG, Borman CN, Noble JF. Gallstone obstruction: pathogenesis and roentgen manifestations. *JAMA*. 1941;117:1753-1759.

Chapter 8

ELIMINATION METHODS IN THE INTOXICATED PATIENT

Veysi SİBER¹

Introduction

As widely known, the human body eliminates various substances acquired from external sources through different mechanisms, such as urinary excretion, fecal elimination, pulmonary exhalation, and secretion expulsion. These processes are crucial for maintaining homeostasis and preventing the accumulation of potentially harmful substances.

In cases of poisoning or exposure to xenobiotics (foreign substances not naturally produced or expected to be present in the body), there are limited methods available to expedite the removal of these substances. One such approach involves enhancing the elimination process to reduce the harmful effects of the xenobiotics. By increasing the rate of elimination through various means, such as enhancing kidney and liver function, accelerating metabolic processes, or promoting enhanced excretion, the body can eliminate the toxic substances more rapidly, minimizing their adverse impact on the individual's health.

It is essential to note that these interventions should be carefully considered and administered by qualified medical professionals to ensure their effectiveness and safety, as accelerating elimination might not be suitable for all toxic substances and can potentially cause harm if not managed properly. Therefore, in cases of poisoning or exposure to harmful substances, seeking immediate medical attention is crucial for appropriate diagnosis and treatment.

In this article, our aim was to present the commonly used eliminationenhancing methods in clinical practice (Table-1).

MD, City Hospital - Emergency Medicine Clinic, veysiber.ss@gmail.com, ORCID iD: 0000-0003-2856-8303

- 2. The Molecular Adsorbents Recirculation System (MARS) is identical to SPAD, but the albumin-enhanced dialysate (with the adsorbed xenobiotics) is itself recycled after going through another dialysis circuit and through both resin and activated charcoal cartridges.
- 3. The Prometheus system is a device that combines albumin adsorption with high-flux hemodialysis after selective filtration of the albumin fraction through a polysulfone filter.

The MARS system is used as a bridge for transplantation, for hemodynamic stabilization prior to liver transplantation, or as a bridge for spontaneous recovery in patients with acetaminophen-induced liver failure. One report states that acetaminophen is completely removed from the blood (11). During MARS, the acetaminophen value dropped from 40 mcg/mL to 0 mcg/ml. This makes us think that MARS improves acetaminophen clearance (12).

- 1. Proudfoot AT, Krenzelok EP, Vale JA. Position Paper on urine alkalinization. Journal of toxicology Clinical toxicology. 2004;42(1):1-26.
- 2. Position statement and practice guidelines on the use of multi-dose activated charcoal in the treatment of acute poisoning. American Academy of Clinical Toxicology; European Association of Poisons Centres and Clinical Toxicologists. Journal of toxicology Clinical toxicology. 1999;37(6):731-51.
- 3. Abel JJ, Rowntree LG, Turner BB. On the removal of diffusable substances from the circulating blood by means of dialysis. Transactions of the Association of American Physicians, 1913. Transfusion science. 1990;11(2):164-5.
- 4. Fertel BS, Nelson LS, Goldfarb DS. The underutilization of hemodialysis in patients with salicylate poisoning. Kidney international. 2009;75(12):1349-53.
- 5. Friesecke S, Abel P, Kraft M, Gerner A, Runge S. Combined renal replacement therapy for severe metformin-induced lactic acidosis. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association European Renal Association. 2006;21(7):2038-9.
- 6. Payette A, Ghannoum M, Madore F, Albert M, Troyanov S, Bouchard J. Carbamazepine poisoning treated by multiple extracorporeal treatments. Clinical nephrology. 2015;83(3):184-8.
- 7. Ghannoum M, Bouchard J, Nolin TD, Ouellet G, Roberts DM. Hemoperfusion for the treatment of poisoning: technology, determinants of poison clearance, and application in clinical practice. Seminars in dialysis. 2014;27(4):350-61.
- 8. Bouchard J, Roberts DM, Roy L, Ouellet G, Decker BS, Mueller BA, et al. Principles and operational parameters to optimize poison removal with extracorporeal treatments. Seminars in dialysis. 2014;27(4):371-80.
- 9. Meyer RJ, Flynn JT, Brophy PD, Smoyer WE, Kershaw DB, Custer JR, et al. Hemodialysis followed by continuous hemofiltration for treatment of lithium intoxication in children. American journal of kidney diseases: the official journal of the National Kidney Foundation. 2001;37(5):1044-7.

- 10. Kale PB, Thomson PA, Provenzano R, Higgins MJ. Evaluation of plasmapheresis in the treatment of an acute overdose of carbamazepine. The Annals of pharmacotherapy. 1993;27(7-8):866-70.
- 11. Khuroo MS, Khuroo MS, Farahat KL. Molecular adsorbent recirculating system for acute and acute-on-chronic liver failure: a meta-analysis. Liver transplantation: official publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society. 2004;10(9):1099-106.
- 12. de Geus H, Mathôt R, van der Hoven B, Tjoa M, Bakker J. Enhanced paracetamol clearance with molecular adsorbents recirculating system (MARS*) in severe autointoxication. Blood purification. 2010;30(2):118-9.

Chapter 9

MANAGEMENT OF DIABETIC KETACIDOSIS IN THE EMERGENCY DEPARTMENT

Veysi SİBER¹

Introduction

Diabetic ketoacidosis (DKA) is generally seen as a complication of patients with type 1 diabetes. It is a fatal disease that can also be seen in patients with type 2 diabetes or those with gestational diabetes. Most children with type 1 diabetes have DKA at first is a clinical finding. DKA may be the first sign of the disease in 20-25% of adult patients with type 1 diabetes (1).

Precipitating factors

The main risk factors that can lead to the development of DKA are outlined as follows:

- Newly Diagnosed Type 1 Diabetes: Approximately 20-25% of DKA cases occur in individuals with newly diagnosed type 1 diabetes. The absence of endogenous insulin secretion renders them vulnerable to metabolic derangements, leading to the onset of DKA
- Infections, including respiratory, urinary tract, and gastrointestinal infections, are common triggers for DKA. The inflammatory response associated with infections induces insulin resistance and gluconeogenesis, exacerbating hyperglycemia
- Errors in Insulin Therapy: Suboptimal insulin administration practices
 contribute significantly to DKA episodes. This includes insulin interruption,
 dose skipping, inadequate dosages, and the inadvertent use of expired insulin.
 The rise in blood glucose levels further promotes ketogenesis. Mistakes made
 during diet
- Cerebrovascular event
- Alcohol, cocaine use

MD, Etlik City Hospital - Emergency Medicine Clinic, veysiber.ss@gmail.com, ORCID iD: 0000-0003-2856-8303

- 1. Calimag APP, Chlebek S, Lerma EV, Chaiban JTJD-a-M. Diabetic ketoacidosis. 2023;69(3):101418.
- 2. Karrar HRJWFM. Diabetic Ketoacidosis: A Review Article. 2022;20(6):66-71.
- 3. Glaser N, Fritsch M, Priyambada L, Rewers A, Cherubini V, Estrada S, et al. ISPAD clinical practice consensus guidelines 2022: Diabetic ketoacidosis and hyperglycemic hyperosmolar state. 2022;23(7):835-56.
- 4. Dhatariya KK, Medicine JBDSfICJD. The management of diabetic ketoacidosis in adults—An updated guideline from the Joint British Diabetes Society for Inpatient Care. 2022;39(6):e14788.
- 5. Azkoul A, Sim S, Lawrence VJSSMJ. Diabetic Ketoacidosis in Adults: Part 3. Special situations. 2022;15(2):71-5.
- 6. Alghamdi NA, Major P, Chaudhuri D, Tsui J, Brown B, Self WH, et al. Saline compared to balanced crystalloid in patients with diabetic ketoacidosis: a systematic review and meta-analysis of randomized controlled trials. 2022;4(1).
- 7. Alshurtan KS, Alnizari O, Aldarwish H, Al-Tufaif AA, Alshurtan K, Al-Tufaif Sr AAJC. Efficacy and Safety of Intravenous Insulin in Treatment of Patient With Diabetic Ketoacidosis: A Systematic Review and Meta-Analysis. 2022;14(10).
- 8. Besen BA, Ranzani OT, Singer MJICM. Management of diabetic ketoacidosis. 2023;49(1):95-8.
- 9. Victor FM, de Lima Andrade SR, Bandeira F. Diabetic Ketoacidosis and Hyperosmolar Hyperglycemic State. Endocrinology and Diabetes: A Problem Oriented Approach: Springer; 2022. p. 355-62.
- 10. Bereda GJBJS, Res T. Diabetic Ketoacidosis: Precipitating Factors, Pathophysiology, and Management. 2022;44(5):35843-8.
- 11. Morris LR, Murphy MB, Kitabchi AE. Bicarbonate therapy in severe diabetic ketoacidosis. Annals of internal medicine. 1986;105(6):836-40.

Chapter 10

MARINE ENVENOMATIONS

Senem KOCA¹

Introduction

In our country, incidents of marine creatures poisonings and injuries are rarely encountered. Due to global warming, climate change, and environmental alterations, there has been an increase in sea water temperatures, leading to the migration of toxic marine creatures from oceans to the Mediterranean Sea. An increase in organisms such as jellyfish is also observed, and it is predicted that this situation will lead to a rise in sea creatures poisoning and injury cases related to marine animals. While some countries have developed antivenoms against certain marine animal stings, there is currently no research on this topic in our country.

Toxins from venomous marine creatures are a mixture of protein and peptide toxins. The method of poisoning varies depending on the species of the organism. Poisonings can be cytotoxic, neurotoxic, myotoxic, dermatotoxic, or hematotoxic, which may result in symptoms such as pain, burning, and swelling. However, they can also lead to more severe conditions like hypertension, rhabdomyolysis, paralysis, and even death (1). Although most injuries are superficial, puncture wounds caused by certain organisms, especially sea urchins, often occur with foreign bodies and can contaminate the skin. (2)

This article will focus on poisonings caused by marine animals.

Envenomations

Stingrays and Venomous Fish

Stingrays (*Dasyatidae*, *Myliobatidae*, *Gimnuridae*, and *Rhinopteridae* families), lionfish, and scorpionfish (*Scorpaenidae* family), stonefish (*Synanceia* family), and catfish (*Ariidae*) are examples of venomous fish. They possess various mechanisms to deliver their toxins, including venomous spines on their fins and dorsal needles, toxin-secreting glandular tissues in their body spines and teeth.

M.D., Etlik City Hospital, Department of Emergency Medicine, senem.ertekin@saglik.gov.tr, ORCID iD: 0000-0003-2495-782X

alternative to tetracyclines for children under 8 years old, as tetracyclines can cause permanent teeth discoloration (56).

Topical antihistamines can be used for itchiness caused by marine dermatitis. Although antivenoms are available for stonefish, box jellyfish, and sea snake stings, there is no antivenom available in Turkey. Stonefish antivenom can be used for stings from other venomous fish. Antivenoms, administered intramuscularly or intravenously, should be closely monitored due to the potential for anaphylaxis and allergy, as they are made from horse serum (57,58).

- 1. Watters MR: Tropical marine neurotoxins: venoms to drugs. *Semin Neurol* 2005; 25:278. [PMID: 16170740]
- 2. Geoffrey K Isbister, Daniel F Danzl, Robert G Hendrickson, Michael Ganetsky: *Marine envenomations from corals, sea urchins, fish, or stingrays*. (Available from: UpToDate: https://www.uptodate.com/contents/marine-envenomations-from-corals-sea-urchins-fish-or-stingrays?search=marine%20envenomation&source=search_result&selectedTitle=1~11&usage_type=default&display_rank=1) Date of Access: July 2023
- 3. Isbister GK: Venomous fish stings in tropical northern Australia. *Am J Emerg Med.* 2001; 19: 561. [PMID: 11699001]
- 4. Kizer KW, McKinney HE, Auerbach PS: Scorpaenidae envenomation. A five-year poison center experience. *JAMA* 1985; 253: 807. [PMID: 3968819]
- 5. Halstead BW. Poisonous and Venomous Marine Animals of the World (Vol 3, Vertebrates). *Washington: US Government Print.* 1970; 986p.
- 6. Silkin, Y.A., Korotkov, S.M. & Silkina, E.N. The study of the bioenergetic characteristics of the red blood cells of Black Sea fish: the common stingray (Dasyatis pastinaca L.) and black scorpionfish (Scorpaena porcus L.). *BIOPHYSICS* 2017; 62:434–439. https://doi.org/10.1134/S0006350917030204
- 7. Hodge D. *Bites and stings*. In: Textbook of Pediatric Emergency Medicine, 6th ed, Fleisher GR, Ludwig S (Eds), Lippincott, Williams, and Wilkins, Philadelphia 2010. p.671.
- 8. Evans RJ, Davies RS. Stingray injury. J Accid Emerg Med 1996; 13:224.
- 9. Fernandez I, Valladolid G, Varon J, Sternbach G. Encounters with venomous sea-life. *J Emerg Med* 2011; 40:103.
- 10. Russell FE: Stingray injuries: a review and discussion of their treatment. *Am J Med Sci* 1953;226: 611. [PMID: 13104413]
- 11. Gopalakrishnakone P, Haddad Jr V. Marine and Freshwater Toxins. Switzerland: *Springer Publishers*. 2016: 476 p.
- 12. Katzer RJ, Schultz C, Pham K, Sotelo MA. The Natural History of Stingray Injuries. *Prehosp Disaster Med* 2022; 37:350.
- 13. Clark RF, Girard RH, Rao D, Ly BT, Davis DP: Stingray envenomation: a retrospective review of clinical presentation and treatment in 119 cases. *J Emerg Med* 2007: 33: 33 [PMID: 17630073]

- 14. Das SK, Johnson MB, Cohly HH. Catfish stings in Mississippi. South Med J 1995; 88:809.
- 15. Briars GL, Gordon GS. Envenomation by the lesser weever fish. *Br J Gen Pract* 1992; 42:213.
- 16. Devlin JJ, Knoop K. Marine Trauma and Envenomation. In: Tintinalli JE, Stapczynski J, Ma O, Yealy DM, Meckler GD, Cline DM. eds. Tintinalli's Emergency Medicine: A Comprehensive Study Guide, 8e. McGraw Hill; 2016. Accessed August 17, 2023. https://accessemergencymedicine.mhmedical.com/content.aspx?bookid=1658§ionid=109438650
- 17. Haddad Jr V, Stolf HO, Risk JY, França FOS, Cardoso JLC. Report of 15 injuries caused by lionfish (Pterois volitans) in aquarists in Brazil: a critical assessment of the severity of envenomations. *J Venom Anim Toxins Incl Trop Dis.* 2015;21:8.
- 18. Haddad Jr V, Giarrizzo T, Soares MO. Lionfish envenomation on the Brazilian coast: first report. *Rev Soc Bras Med Trop*. 2022;55:e0241.
- 19. Haddad Jr V, Martins IA, Makyama HM. Injuries caused by scorpionfishes (Scorpaena plumieri Bloch, 1789 and Scorpaena brasiliensis Cuvier, 1829) in the Southwestern Atlantic Ocean (Brazilian Coast): epidemiologic, clinic and therapeutic aspects of 23 stings in humans. *Toxicon*. 2003;42(1):79-83.
- 20. Lucy M. Gorman, Sarah J. Judge, Myriam Fezai et all, The venoms of the lesser (Echiichthys vipera) and greater (Trachinus draco) weever fish—A review, *Toxicon: X*, 2020; Volume 6:100025, ISSN 2590-1710, https://doi.org/10.1016/j.toxcx.2020.100025. (https://www.sciencedirect.com/science/article/pii/S2590171020300035)
- 21. Yıldız, T. and Karakulak, F.S. (2018). Toxic Effects of Weever Fishes Among Poisonous Fishes Along the Coast of Turkey. *Aquatic Sciences and Engineering*, 2018; 33(1): 20-24.
- 22. Haddad Jr V, Cardoso JLC, Garrone Neto D. Injuries by marine and freshwater stingrays: history, clinical aspects of the envenomations and current status of a neglected problem in Brazil. *J Venom Anim Toxins Incl Trop Dis.* 2013;19:16.
- 23. Haddad Jr V, Martins IA. Frequency and gravity of human envenomation caused by marine catfish (suborder Siluroidei): a clinical and epidemiological study. *Toxicon*. 2006;47(8):838-43.
- 24. Hornbeak, K. B., & Auerbach, P. S. Marine Envenomation. *Emergency Medicine Clinics of North America*. 2017:35(2), 321–337. doi:10.1016/j.emc.2016.12.004
- 25. Reid HA. Epidemiology of sea-snake bites. J Trop Med Hyg 1975; 78:106.
- 26. Johnston CI, Tasoulis T, Isbister GK. Australian Sea Snake Envenoming Causes Myotoxicity and Non-Specific Systemic Symptoms Australian Snakebite Project (ASP-24). *Front Pharmacol* 2022; 13:816795.
- 27. Fulde GW, Smith F. Sea snake envenomation at Bondi. *Med J Aust* 1984; 141:44.
- 28. Isbister GK, Kiernan MC: Neurotoxic marine poisoning. *Lancet* Neurol 4: 219, 2005. [PMID: 15778101]
- 29. Centers for Disease Control and Prevention: Tetrodotoxin poisoning outbreak from imported dried puffer fish–Minneapolis, Minnesota, 2014. MMWR Morb Mortal Wkly Rep 63: 1222, 2015. [PMID: 25551594]
- 30. Cavazzoni E, Lister B, Sargent P, Schibler A: Blue-ringed octopus (Hapalochlaena sp.) envenomation of a 4-year-old boy: a case report. *Clin Toxicol (Phila)* 2008: 48;760. [PMID: 19238736]

- 31. Duterte S, Jin AH, Alewood PF, Lewis RJ: Intraspecific variations in Conus geographus defense-evoked venom and estimation of the human lethal dose. *Toxicon*: 2014;91: 135. [PMID: 25301479]
- 32. Morocco A. Sea urchin envenomation. Clin Toxicol (Phila) 2005; 43:119.
- 33. Tibballs J, Li R, Tibballs HA, et al. Australian carybdeid jellyfish causing "Irukandji syndrome". *Toxicon* 2012;59:617–25.
- 34. Dahl WJ, Jebson P, Louis DS. Sea urchin injuries to the hand: a case report and review of the literature. *Iowa Orthop J* 2010; 30:153.
- 35. Haddad V Jr, Lupi O, Lonza JP, Tyring SK. Tropical dermatology: marine and aquatic dermatology. *J Am Acad Dermatol* 2009; 61:733.
- 36. Perkins RA, Morgan SS. Poisoning, envenomation, and trauma from marine creatures. *Am Fam Physician* 2004; 69:885.
- 37. Lumley J, Williamson JA, Fenner PJ, et al. Fatal envenomation by Chironex fleckeri, the north Australian box jellyfish: the continuing search for lethal mechanisms. *Med J Aust* 1988;148:527–34.
- 38. Hanley M, Tomaszewski C, Kerns W: The epidemiology of aquatic envenomations in the US: most common symptoms and animals. *J Toxicol Clin Toxicol*. 2000;38 (Abstr): 512. [No PMID]
- 39. Burgess GH, Callahan MT, Howard RJ: Sharks, alligators, barracudas, and other biting animals in Florida waters. *J Fla Med Assoc.* 1997: 84: 428. [PMID: 9360352]
- 40. Haddad V Jr, Neto DG, de Paula Neto JB, et al. Freshwater stingrays: study of epidemiologic, clinic and therapeutic aspects based on 84 envenomings in humans and some enzymatic activities of the venom. *Toxicon* 2004;43:287–94.
- 41. Lotan A., Ben-Hillel R, Loya Y. Life cycle of Rhopilema nomadica: a new immigrant scyphomedusan in the Mediterranean. *Marine Biology*. 1992: 112(2), 237-242.
- 42. Loten C, Stokes B, Worsely D, et al: A randomized controlled trial of hot water (45°C) immersion versus ice packs for pain relief in Physalia stings. *Med J Aust.* 2006: 184: 329. [PMID: 16584366]
- 43. Stein MR, Marraccini JV, Rothschild NE, Burnett JW: Fatal Portuguese man-o'-war (Physalia physalis) envenomation. *Ann Emerg Med.* 1989: 18: 312. [PMID: 2564268]
- 44. Australian Research Council: Guideline 9.4.5 Envenomation Jellyfish Stings. (Available from: http:// https://www.anzcor.org/home/new-guideline-page-4/guideline-9-4-5-envenomation-jellyfish-stings/) Accessed July 10, 2023.
- 45. Australian Research Council: Press release research conducted at James Cook University—an in-vitro examination of the effect of vinegar on discharged nematocysts of Chironex fleckeri [box jellyfish]. (Available from: https://resus.org.au/press-release-research-conducted-at-the-james-cook-university-an-in-vitro-examination-of-the-effect-of-vinegar-on-discharged-nematocysts-of-chironex-fleckeri-box-jellyfish/) Accessed August 5, 2023.
- 46. Currie BJ, Wood YK: Identification of Chironex fleckeri envenomation by nematocyst recovery from skin. *Med J Aust* 1995:162: 478. [PMID: 7746205]
- 47. Birsa LM, Verity PG, Lee RF: Evaluation of the effects of various chemicals on discharge of and pain caused by jellyfish nematocysts. *Comp Biochem Physiol C Toxicol Pharmacol* 2010: 151: 426. [PMID: 20116454]
- 48. Burnett JW, Rubinstein H, Calton GJ: First aid for jellyfish envenomation. *South Med J* 1983: 76: 870. [PMID: 6135257]

- 49. Tibballs J: Australian venomous jellyfish, envenomation syndromes, toxins and therapy. *Toxicon*. 2006:48: 830. [PMID: 16928389]
- 50. Kreger AS. Detection of a cytolytic toxin in the venom of the stonefish (Synanceia trachynis). *Toxicon.* 1991;29:733–43.
- 51. Taylor KS, Zoltan TB, Achar SA. Medical illnesses and injuries encountered during surfing. *Curr Sports Med Rep* 2006; 5:262.
- 52. Bronstein AC, Spyker DA, Cantilena LR, et al. 2010 annual report of the American Association of Poison Control Centers' National Poison Data System (NPDS): 28th annual report. *Clin Toxicol (Phila)* 2011;49:910–41.
- 53. Isbister GK, Hooper JN. Clinical effects of stings by sponges of the genus Tedania and a review of sponge stings worldwide. *Toxicon* 2005; 46:782.
- 54. Strickland CD, Auckland AK, Payne WT: Surgical implications of preoperative sonographic localization of sea urchin spine foreign bodies. *J Ultrasound Med* 2014:33: 177. [PMID: 24371114]
- 55. Fenner PJ, Williamson JA, Skinner RA. Fatal and non-fatal stingray envenomation. *Med J Aust* 1989; 151:621.
- 56. Tetracycline. Kimberlin DW, Brady MT, Jackson MA, Long SS (Eds), In: *Red Book 2018: Committee on Infectious Diseases; American Academy of Pediatrics*; 31st edition, American Academy of Pediatrics, Itasca, IL 2018.
- 57. Isbister GK: Antivenom efficacy or effectiveness. *The Australian experience. Toxicology* 2010:268: 148. [PMID: 19782716]
- 58. White J: CSL Antivenom Handbook, 2nd ed. Melbourne, Australia: CSL Ltd.; 2001.

Chapter 11

RADIATION INJURIES

İsmail BORAZAN¹

Introduction

Exposure to radiation (irradiation) occurs when an individual is present in an environment where radioactive material is present. Unlike contamination, in irradiation, no transfer of radioactive material is observed, and it does not pose a threat to the surroundings. Contamination, on the other hand, is defined as having radioactive material externally or internally in the body, where the spread of radioactive material is observed, and it can present a hazardous situation for the surroundings. External contamination results from the penetration of radiation from the source to the skin and even deeper, while internal contamination occurs when radioactive particles are ingested or inhaled (1).

Four factors are crucial for protection from radioactivity: time, distance, protective equipment, and the quantity of radioactive material. Individuals should increase their distance from the source to reduce exposure, attempt to decontaminate the environment, minimize the time spent in the same vicinity as the source, and employ protective gear to prevent the impact of the source. Current medical treatment plays a vital role in cases of moderate to high levels of exposure (1,2).

Patients contaminated with radiological particles generally do not pose a significant risk of acute radiation dose to healthcare personnel if proper protective equipment is used, and decontamination procedures are followed. Therefore, healthcare workers should not refrain from treating conventional traumas caused by ionizing radiation or radioactive contamination. Healthcare personnel should be monitored for contamination and, if necessary, decontaminated after treatment. Patients who have been exposed only to radiation without contamination do not pose any risk to healthcare workers (3).

MD, Etlik City Hospital, Department of Emergency Medicine, drismailborazan@gmail.com ORCID iD: 0009-0003-4486-6383

technologies, adherence to safety protocols, and continuous training, medical personnel can minimize the risks associated with radiation exposure, ensuring optimal patient outcomes and the overall well-being of both caregivers and the community. As research continues to evolve and guidelines are refined, the healthcare community must remain vigilant, adaptive, and well-informed to effectively manage the challenges posed by radiation exposure in the realm of emergency medicine.

- 1. López M, Martín M. Medical Management of the Acute Radiation Syndrome. *Reports of Practical Oncology and Radiotherapy.* 2011;16(4):138-146. doi:10.1016/j. rpor.2011.05.001.
- 2. Hughes WT, Armstrong D, Bodey GP, et al. 2002 guidelines for the use of antimicrobial agents in neutropenic patients with cancer. *Clinical Infectious Diseases*. 2002;34:730–51.
- 3. The Medical Aspects of Radiation Incidents. Radiation Emergency Assistance Center/Training Site (REACT/TS). Accessed November 2010. Available from: http://www.orise.orau.gov/reacts.
- 4. Leonard RB, Ricks RC. Emergency Department Radiation Accident Protocol. *Annals of Emergency Medicine*. 1980;9:462.
- U.S. Food and Drug Administration. FDA talk paper: guidance on protection of children and adults against thyroid cancer in case of nuclear accident. Issued December 10, 2001. Available from: http://www.fda.gov/Drugs/EmergencyPreparedness/ BioterrorismandDrugPreparedness/ucm063807.html.
- 6. Dainiak N, Gent RN, Carr Z, et al. First global consensus for evidence-based management of the hematopoietic syndrome resulting from exposure to ionizing radiation. *Disaster Medicine Public Health Preparedness*. 2011;5(3):202-212. doi: 10.1001/dmp.2011.68.
- 7. Public Communication in a Nuclear or Radiological Emergency. Available from:http://www-pub.iaea.org/books/IAEABooks/8889/Communication-with-the-Public-in-a-Nuclear-or-Radiological-Emergency.
- 8. Acute radiation syndrome: clinical picture, diagnosis and treatment. IAEA Publications Module XI, http://www.IAEA.org
- 9. General Procedures for Medical Intervention in Nuclear and Radiological Emergency Situations. Available from: http://www-pub.iaea.org/MTCD/publications/PDF/EPR-MEDICAL-2005_web.pdf.
- National Council on Radiation Protection and Measurements. Management of terrorist events involving radioactive material. NCRP Report No. 138. Bethesda, MD: National Council on Radiation Protection and Measurements; 2001.
- 11. NCRP Report 160 Exposure of the United States Population to Ionizing Radiation (2009).
- 12. Mettler FA, Voelz GL. Major radiation exposure-what to expect and how to respond. *New England Journal of Medicine*. 2002;346:1554.

- 13. NCRP Report 161 Management of Persons Contaminated with Radionuclides: Handbook (2008).
- 14. NCRP Report 165 Intervention in Radiological and Nuclear Terrorism Incidents: A Guide for Decision Makers (2010).
- 15. NCRP Report 166 Monitoring of the Population and Radionuclide Decorporation Following a Radiological or Nuclear Incident (2010).
- 16. NCRP Report 174 Preconception and Prenatal Radiation Exposure: Health Effects and Protective Guidance (2013).
- 17. Rapid Internal and External Dose Estimation. Available from: http://orise.orau.gov/files/reacts/rapid-internal-external-dose-magnitude-estimation.
- 18. Vyas DR, Dick RM, Crawford J. Management of radiation accidents and exposures. *Pediatric Emergency Care*. 1994;10:232.
- 19. Radiation Emergency Assistance Center/Training Site (REAC/TS). Available from: http://www.orise.orau.gov/reacts.
- 20. USG DHHS Medical Management of Radiation Incidents REMM. Available from: http://www.remm.nlm.gov/
- 21. Flynn DF, Goans RE. Nuclear terrorism: triage and medical management of radiation and combined-injury casualties. *Surgical Clinics of North America*. 2006;86:601–36.
- 22. Van Vekkum DW. Radiation sensitivity of the hematopoietic stem cell. *Radiation Research*. 1991;128:4-8.
- 23. Leonard RB, Ricks RC. Emergency department radiation accident protocol. *Annals of Emergency Medicine*. 1980;9:462.
- 24. Wolbarst AB, Wiley AL, Nemhauser JB, et al. Medical Response to a major radiological emergency: a primer for medical and public health practitioners. *Radiology*. 2010;254(3):660–677.
- 25. Darte JM, Little WM. Management of acute radiation syndrome. *Canadian Medical Association Journal*. 1967;96:196.
- 26. U.S. Food and Drug Administration. FDA talk paper: guidance on protection of children and adults against thyroid cancer in case of nuclear accident. Issued December 10, 2001. Available from: http://www.fda.gov/Drugs/EmergencyPreparedness/BioterrorismandDrugPreparedness/ucm063807.htm.
- 27. RITN Radiation Injury Treatment Network. Acute radiation syndrome treatment guidelines; September 2010. Available from: http://www.RTIN.net
- 28. Prevention and treatment of cancer-related infections. NCCN Clinical Practice Guidelines in Oncology. V.2.2009. Available from: http://www.NCCN.org.