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PREFACE 
 
 
Turbulent fluid flow  is a very complicated natural phenomenon  from the 
viewpoint of both  understanding and analysis.  Therefore, in turbulent motion 
studies,  besides the  theoretical analysis,  statistical  and  empirical correlation 
methods must also be resorted to.  The most fluid flows encountered in 
industry,  especially  in  aeronautics,  and  civil, environmental, mechanical, 
and chemical engineering are  turbulent  and many phenomena,  such as heat 
or mass transfer,  are intimately linked to the fluid motion.  In spite of the 
variety of  experimental works  on the structure of turbulent flows have so far 
been conducted,  the fundamental mechanisms in  turbulence phenomenon 
still remain  incompletely clarified  and  many problems remain open. 
 Fluid mechanics  is surrounded  by the difficulty that man’s ability  to write 
the  governing equations of motion  far outruns his ability to  solve them.  This 
difficulty is a great handicap, in the analysis of turbulent flows.  The governing 
equations,  can be considered to be exact and to apply even to the smallest 
eddies of turbulence.  But, because turbulent flow is always three-dimensional, 
even in one-dimensional flow, the governing equations are three-dimensional, 
unsteady,  nonlinear partial differential equations. 
 Turbulence is a natural phenomenon and the investigation of it relies on 
traditional basic concepts.  There are two ways to study the fluid turbulence: 
exact science method   and   model method.   The method of  exact science 
is based on  fundamental laws and principles  of  physics  by applying 
mathematics  and  supported  by  experimental work.  On the other hand,  the 
modeling approach  is  heavily based on  empiricism. 
 A turbulence model  is a composition of model equations.  They describe 
the turbulent flow phenomenon,  which cannot perhaps be the actual 
turbulence,  but adequately close to it  for representing a  useful  and  simplified 
nature of the happening.  The accuracy of the model  and  its capability  to 
represent the characteristics of a turbulent flow,  are directly dependent on the 
existing knowledge of the  physics of the phenomenon  that it has been possible 
to formulate in the  model equations. 
 Actually, the turbulence model  is a qualitative and quantitative summary 
of the present knowledge on fluid turbulence.  Accordingly, the mathematical 
models related to turbulent flow are open to continuous improvement, 
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enriched by  new concepts  inspired by  experimental findings  or  numerical 
simulations  or progress achieved in  theoretical approaches. 
 Currently,  the subject of  real-fluid flow analysis  lies in an awkward 
transition from the  traditional mathematical approach  toward  digital-
computer simulations.  Traditional  mathematical boundary-flow analysis, 
supported by experimental data,  gives good insight into viscous flow but 
limited to certain approximations and simple geometries only.  Computer 
modeling,  on the other hand,  is also successfully applicable to  nonboundary-
layer problems  but gives less insight and is restricted by  grid-storage  and 
truncation-accuracy  limitations.  Moreover, the computational turbulence 
modeling  has distinct physical and geometric limitations. 
 The advent of supercomputers in recent years,  has led the investigators 
and the practicing engineers to discard detailed study of  analytical methods 
because  every purely theoretical approach  does not lead to practical 
prediction methods.  Therefore, among the existing theories and models for 
the turbulent flow studies,  preference has been given to the methods of 
numerical predictions.  So,  the  numerical prediction  of turbulent flows  is 
now becoming more and more important for practical applications.  In fact, 
the  exact science method  and the  model method,  for the analysis of turbulent 
flow,  are to some extent complementary. 
 The aim of this book is to present the  basic theory of turbulent flow  and 
the methods of  turbulence closure modeling  for  Computational Fluid 
Dynamics (CFD).  The last chapter of the book  is devoted  to the summary of 
results  of the investigations that have been carried out  in  Civil Engineering 
Department of Çukurova University,  concerning the  CFD simulation of 
turbulent flow  for some  engineering applications. 
 The material presented in this book  is appropriate as a  reference text  for 
a  postgraduate CFD course  and  for practicing engineers.  We hope that this 
book will be beneficial for the  scientists,  students  and  practicing engineers 
in their efforts of  CFD simulation of turbulent flow. 
 
 
July, 2021            Prof. Dr. M. Salih KIRKGÖZ 
Adana             Prof. Dr. M. Sami AKÖZ 
 
skirkgoz@cukurova.edu.tr 
msa@cukurova.edu.tr 
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NOTATION 
 
 
A    Surface area 
ai    Acceleration in tensor notation 
aij, bij   Reynolds-stress anisotropy tensor 
Cn    Courant number 
C    Model constant 
Cij    Cross-term stresses 
c    Concentration of matter 
cf    Local skin friction 
D    Diffusion coefficient 
Dt    Turbulent mass diffusivity 
DNS   Direct numerical simulation 
E    Stored energy 
E(), E(f) Turbulence kinetic energy of each wave 
F    Volume fraction 
Fkleb   Klebanoff’s intermittency function 
Fij    System rotation term 
F1, F2   Blending function 
Fr    Froude number 
FVM   Finite volume method 
f    Frequency, Damping function 
fi    Mass diffusion flux, Body force per unit mass 
f    Damping function for C 
G    Shape factor 
Gr    Grashof number 
Gij    Buoyant production term 
GCI   Grid convergence index 
g    Gravitational acceleration 
H(x)   Ramp function 
h    Flow depth 
I    Turbulence intensity 
K    Mean kinetic energy 
k    Turbulence kinetic energy 
kl    Laminar kinetic energy 
ks    Nikuradse’s equivalent sand roughness 
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ksgs   SGS kinetic energy 
L    Characteristic length scale 
Lint   Integral length scale 
Lij    Leonard stresses 
LES   Large eddy simulation 
     Turbulence length scale 

m    Mixing-length 
o     Large eddy length scale 
    Small eddy length scale 

 ,    Turbulence length scales 
Le    Lewis number 
MSE   Mean square error 
Pk    TKE production term 
Pr    Prandtl number 
p    Instantaneous pressure, Order of accuracy 
p     Mean pressure 

ep     Pressure at the outer edge of boundary layer 
p    Pressure fluctuation 
Q    Heat, Flow rate 
R    Radius of pipe, Averaged effect of breakdown of fluctuations 
Ra    Rayleigh number 
Ri    Richardson number 
Rij    Correlation coefficient, Reynolds stress tensor 
Rnat   Natural transition production term 
Re    Reynolds number 

Re    Local turbulent Reynolds number 
Ret   Turbulent Reynolds number 
RANS  Reynolds-averaged Navier-Stokes equation 
r    Grid refinement factor 
Sc    Schmidt number 
Sr    Tuning parameter 
Sij    Mean strain-rate tensor, Mean angular deformation rate tensor 
SGS   Subgrid-scale 
sij    Fluctuating strain-rate tensor 
T    Duration, Period of eddies 
Tm    Time scale of molecular diffusion 
Tt    Characteristic time scale 
TKE   Turbulence kinetic energy 
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t    Time 
Û     Internal energy 
û     Internal energy per unit mass 
u, v, w  Instantaneous velocity components 
u,v,w   Mean velocity components 
u ,v ,w     Velocity fluctuations 
ui    Instantaneous velocity in tensor notation 

iu     Mean velocity in tensor notation 
mu    Freestream mean velocity (shear-layer edge velocity) 

iu    Velocity fluctuation in tensor notation 
u     Friction (shear) velocity 

rmsu    Root mean square of the fluctuation velocity 
u+    Dimensionless velocity 
x, y, z  Cartesian coordinates 
xi    Position in tensor notation 
V     Instantaneous velocity 
V     Mean velocity 
V     Velocity fluctuation 
VOF   Volume of fluid 
     Volume 
W    Work 
w    Wake function 
Y    Yap length scale correction 
y+    Dimensionless wall distance 
 
    Thermal diffusivity 
    Clauser’s equilibrium parameter 
    Generalized diffusion coefficient 
    Intermittency factor, Unit weight of fluid 
    Boundary layer thickness 
     Displacement thickness 

    Defect thickness 
t    Time step 
    Turbulence kinetic energy dissipation rate 

ij     Vorticity tensor 
    Temperature 
    Wave number, Karman constant 
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Chapter 1 

 
PRELIMINARY CONCEPTS OF FLUID FLOW 

 
 
1.1  INTRODUCTION 
 
1.1.1  Description of  Computational Fluid Dynamics  (CFD) 
 
In the analysis and design of engineering systems involving the interaction 
with fluid flow, there are two fundamental approaches:  (i) Model or 
prototype experimentation and  (ii) Theoretical calculation.  The latter 
involves the  solution of governing equations,  either analytically or 
computationally.  Theoretical calculation approach through use of a 
computer-based simulation   for the  analysis of fluid flow  that interacts 
with a structure is called as  Computational Fluid Dynamics  (CFD). 

In modern engineering practice,  the experimental  and  CFD analyses 
are both used together to complement and support each other.  While CFD 
techniques are used for a detailed analysis of the flow field, the 
experimental data  for the same problem are often used to validate the CFD 
solutions. After matching the computationally and experimentally 
determined global quantities of the flow,  CFD is then employed to shorten 
the design procedure for chosen parametric trials for the problem,  thereby 
reducing the repetitions of experimental testing.  That means the numerical 
experimentation replaces the laboratory or field experimentation for various 
parametric solutions.  In this way, as important advantages, substantial 
reduction of  times  and  costs  of the   new designs  may be achieved. 

The application of  CFD techniques  to the  laminar flows  is quite 
successful.  On the other hand,  more complicated turbulent flows  of 
practical engineering interest are impossible to solve without invoking the 
turbulence closure models  formulated especially for CFD applications. 
The success of the CFD solutions for turbulent flow,  depends on the 
appropriateness of the chosen turbulence model.  Unfortunately, there is no 
universally accepted turbulence model that is successful for all type practical 
flow problems.  In spite of this limitation,  available turbulence closure 
models  presented for different type of CFD problems  seem to yield 
reasonable results for  many practical engineering problems. 
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