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Chapter 3

A NOVEL MACHINE LEARNING METHOD FOR 
PATTERN RECOGNITION AND CLASSIFICATION

Ali Mert CEYLAN1

Mete EMİNAĞAOĞLU2

INTRODUCTION

Handwritten digit recognition is known to have practical importance because 
of well-established datasets and real-world applications such as automated form 
reading and handwritten zip code processing (Keysers, 2007). History of MNIST 
database resides in the early requirements and the developments achieved in the 
AT&T Bell Laboratories. The MNIST database is the historical descendant of the 
NIST database. However, NIST training and test sets were representatives of dif-
ferent distributions (LeCun et al., 1995). After NIST dataset has been re-parti-
tioned, and images’ size been normalized, the MNIST database was created. It 
consists of 60000 training images and 10000 test images, drawn from the same 
distribution. All these grayscale digits are normalized and centered in a fixed-size 
image with 28x28 pixels (Deng, 2012).

Several classification algorithms have been developed to deal with the task 
specifically or optimized for pattern recognition tasks (Bishop, 2006). The rapid 
progress is a result of various developments, such as inexpensive computers and 
new algorithms “that take advantage of allowing larger datasets to be used for 
training and testing of pattern recognition” (LeCun et al., 1995). However, there 
exist kernel methods that hash data points and preserve similarity in the origin 
space (Li et al., 2016). During the new progress in data science, various algorithms 
are devised that can be grouped as linear classifiers, k-nearest neighbors, ensemble 
learners, decision trees, non-linear classifiers, support vector machines, artificial 
neural networks, convolutional networks (Deng, 2012; Bouali & Akaichi, 2016).

Most of the pattern recognition systems rely on two main modules. The first 
module is the feature extractor, which enables the representation of input pat-
terns by vectors that could be matched and that are relatively invariant to trans-
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be trained with the dataset first and then the artificial neural network can begin 
training on reconstructed images.

If the training times could be reduced and the accuracy performance could be 
increased, then this novel model might be considered as a promising alternative 
classifier for industrial implementations and applications that require a very small 
amount of storage space and limited processors, such as the sensors used in IoT 
(Internet of Things) and Industry 4.0. Even with their outstanding accuracy and 
precision performances, convolutional neural networks and other similar deep 
learning models and architectures are still very difficult to be implemented and 
used in simple devices with low capacities, such as the ones used in IoT.
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