
- 89 -

Onur KARAMAN1

Ceren KARAMAN2

1. Introduction

Graphene is a “a miracle two-dimensional (2D) material” with a single sheet 
of carbon atoms packed into a honeycomb lattice. It has been the focus of in-
tense interest of physics, chemistry, material science, and engineering since its 
discovery in 2004. Due to its outstanding physicochemical properties, graphene 
demonstrates a great potential for various applications such as composite materi-
als, nanoelectronics, energy storage, sensors, environment, catalysis and biomed-
ical (Fang et al., 2015).

The fabrication of graphene into 3D hierarchical architectures for practical ap-
plications is still a challenge in nanotechnology. Generally, 2D graphene is synthe-
sized through thermal or chemical reduction of graphene oxide (GO) exfoliated 
from graphite. In such cases, as a result of the strong π- π interactions between 
the graphene sheets 2D graphene structure tend to agglomerate or to restack, 
which causes to the decreasing of electrochemically active surface area. Further-
more, due to the abundant existence of defects and oxygen-containing functional 
groups, and numerous non-ideal contacts between graphene layers, the resulting 
graphene structure exhibit severely compromised conductivity (Fang et al., 2015; 
Lu, 2018). These shortcomings severely limit the performance of graphene-based 
energy storage systems, sensors and other electronic applications. In order to fully 
exploit the theoretical properties of graphene, different strategies have been de-
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and exciting potential applications. In this chapter, a variety of approaches based 
on self-assembly and template-assisted methods to produce three dimensional 
graphene architectures have been presented briefly. However, all of these tech-
niques have both pros and cons in point of the ease of production method and 
the quality of obtained graphene structure. The fabricated 3D graphene networks 
have various superior merits which enable us to use in different promising fields 
such as energy conversion/storage, environment, biomedical, electronic and so 
on. Therefore, although many efforts have been devoted for the fabrication of 3D 
graphene structures, many challenges still remain for their further commercial-
ization. Even though these 3D graphene structures exhibit excellent characteris-
tics in the laboratory, more researches are still required to meet the demand for 
commercial application. Moreover, the structures and properties of 3D graphene 
require further optimization for specific applications. So, it should be investigated 
the way of low-cost and eco-friendly large scale production methods of fabri-
cating 3D graphene networks. Ultimately, it can be concluded that 3D graphene 
architectures with optimized structures, controlled morphologies, and tailored 
properties will bring more exciting results in various extended fields such as en-
ergy storage, environment, electrochemistry, actuator, artificial organ, biosensors, 
wearable electronics.
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