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Chapter 2

AS AN EXTREME HABITAT FOR PLANTS: 
SERPENTINE SOILS

Beste Gizem ÖZBEY1

The primary goals of organisms are to survive by their nature. In this way, 
they transfer genetic information and ensure it continues from generation to gen-
eration. An organism that has not been able to complete the transfer of genetic 
information, in a sense, has not fully completed its task. The more an organism 
can adapt to environmental conditions, the longer it can survive, increase the like-
lihood of transferring its genes, and is regarded as evolutionarily successful.

The success of keeping up with change and difficult conditions is parallel with 
the success of survival. Some environmental conditions become harder and cause 
life to turn into a challenge for most of all species. These habitats, called extreme 
habitats, act as a formidable test for organisms.

Extreme habitats are depicted under harsh environmental conditions and con-
tain species that can adapt to conditions where related species couldn’t be able to 
tolerant (1).

Extreme habitats, which are important laboratories of biodiversity in the na-
ture, create serious pressures on the species and lead them to selection. These 
extreme habitats, serpentine, gypsum and saline soils can be edaphically exem-
plified, are extremely important centers of endemism almost everywhere in the 
world. These areas formed as a result of geological isolation are known as geo-
logical/edaphic islands. Some plant species that have been able to cope with ex-
treme-edaphic conditions can survive in these habitats with their rare biota(2, 3).

Plants that named as halophytes, serpentinophytes, gypsophytes, metallo-
phytes are adapted to edaphic conditions which are negative for other plants. 
While intraspecific differentiation can lead to resistant ecotypes, some species are 
known to prefer extrem habitats more because of their basic physiological prop-
erties. Physiotypical properties play an important role in explaining the survival 
of some plants in adverse conditions (4).

Serpentine soils are natural and ideal model systems that were developed to 
investigate the responses of plants against edaphic factors. Avoiding current ad-
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the presence of serpentinicoles. Serpentine soils provide niche to other organisms 
besides plants (44, 45). In arthropods, physiological camouflage is the same as in 
seeds (Fig. 7.).

Fig. 7. A serpentine-adapted arachnoid from Elmadağ, Ankara (Photo by 
B.G.ÖZBEY)

Serpentine habitats are used as models for adaptation to extreme habitats and 
for restoration of soils exposed to metal contamination. Understanding these hab-
itats that need to be protected and researched will be of great benefit in shedding 
light on evolutionary and ecological approaches.

Particularly, some of the plants specific to these habitats are quite rare, so max-
imum care must be taken to protect them. As in the other serpentine habitats in 
the world, day by day in Turkey is being described new species in these special 
habitats that contribute to the flora and biodiversity.

Although there are many studies, more studies are needed on edaphic speciali-
zation in order to illuminate the serpentine systems that have not been completely 
resolved.
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